{x+y=pi/4 ;tgx+tg (-y)=1/6

{x+y=pi/4 ;tgx+tg (-y)=1/6
Гость
Ответ(ы) на вопрос:
Гость
Дана система уравнений: {x+y=pi/4;                                         {tgx+tg(-y)=1/6. Возьмём тангенс от левой и правой частей первого уравнения. tg(x+y) = tg(pi/4), раскроем тангенс суммы углов: tg(x+y) = (tgx+tgy)/(1-tgx*tgy), а tg(pi/4) = 1. Из второго уравнения имеем tgx = tgy+(1/6) и подставим в первое. (tgy+1+tgy)/(1-(tgy+(1/6))*tgy) = 1, то есть числитель равен знаменателю. 2tgy+(1/6) = 1-tg²y-(1/6)tgy. Приведя подобные, получаем квадратное уравнение: tg²y+(13/6)tgy-(5/6) = 0.  Сделаем замену: tgy = z. 6z²+13z-5 = 0. Квадратное уравнение, решаем относительно z: Ищем дискриминант: D=13^2-4*6*(-5)=169-4*6*(-5)=169-24*(-5)=169-(-24*5)=169-(-120)=169+120=289;Дискриминант больше 0, уравнение имеет 2 корня: z₁=(√289-13)/(2*6)=(17-13)/(2*6)=4/(2*6)=4/12 = 1/3 ≈ 0.33333;    z₂=(-√289-13)/(2*6)=(-17-13)/(2*6)=-30/(2*6)= -30/12 = -2.5.Обратная замена: tgy = 1/3,   tgy = -2,5. Находим tgх = (1/3)+(1/6) = 3/6 = 1/2.               tgх = -2,5+(1/6) = -(5/2)+(1/6)= -7/3. Ответ: х = arc tg(1/2) + πk. k ∈ Z,   или  х = 0.463648 + πk. k ∈ Z,                         х = arc tg(-7/3) + πk. k ∈ Z,         х = -0.588      + πk. k ∈ Z,                     y = arc tg(1/3) + πk. k ∈ Z,          у = 0.321751 + πk. k ∈ Z,                     y = arc tg(-5/2) + πk. k ∈ Z,         у = -1.19029  + πk. k ∈ Z,  В приложении дан ответ, полученный программой WolframAlpha.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы