Дипломная работа: * Алгебры и их применение

Унитарные элементы А образуют группу по умножению – унитарную группу А. Действительно, если x и y – унитарные элементы *-алгебры А, то

((хy)*)-1 = (у*х*)-1 =(х*)-1 (y*)-1 = xy,

поэтому xy унитарен, и так как ((х-1)*)-1= ((х*)-1)-1 = х-1, то х-1 унитарен.

1.5. Гомоморфизм и изоморфизм алгебр

Определение 1.7. Пусть А и В – две *-алгебры. Назовем гомоморфизмом (*-гомоморфизмом) А в В такое отображение f множества А в В, что

f (x + y) = f (x) + f (y),

f (αx) = α f (x),

f (xy) = f (x) f (y),

f (x*) = f (x)*

для любых х,yА, αС. Если отображение f биективно, то f называют изоморфизмом (*-изоморфизмом).

Определение 1.8. Совокупность I элементов алгебры А называется левым идеалом, если:

I ≠ A;

Из х, yI следует x + y I;

Из хI, а αА следует α хI.

Если I = А, то I называют несобственным идеалом.

Аналогично определяется и правый идеал. Идеал, являющийся одновременно и левым, и правым, называется двусторонним.

Всякий идеал автоматически оказывается алгеброй.

Пусть I – двусторонний идеал в алгебре А. Два элемента х, y из А назовем эквивалентными относительно идеала I, если х-yI. Тогда вся алгебра А разбивается на классы эквивалентных между собой элементов. Обозначим через А совокупность всех этих классов. Введем в А1 операции сложения, умножения на число и умножения, производя эти действия над представителями классов. Так как I – двусторонний идеал, то результат операций не зависит от выбора этих представителей.

Следовательно, А1 становится алгеброй. Эта алгебра называется фактор-алгеброй алгебры А по идеалу I и обозначается A/I.

*-гомоморфизм алгебр описывается при помощи так называемых самосопряженных двусторонних идеалов.

Определение 1.9. Идеал I (левый, правый или двусторонний) называется самосопряженным, если из хI следует х*I.

Самосопряженный идеал автоматически является двусторонним. Действительно, отображение х → х* переводит левый идеал в правый и правый идеал в левый; если поэтому отображение х → х* переводит I в I, то I есть одновременно и левый и правый идеал.

В фактор-алгебре A/I по самосопряженному двустороннему идеалу I можно определить инволюцию следующим образом. Если х-yI, то х*-y*I. Поэтому при переходе от х к х* каждый класс вычетов х по идеалу I переходит в некоторый другой класс вычетов по I. Все условия из определения 1.2. выполнены; следовательно, A/I есть *-алгебра.

Если х → х΄ есть *-гомоморфизм А на А΄, то полный прообраз I нуля (то есть ядро данного гомоморфизма) есть самосопряженный двусторонний идеал в А. Фактор-алгебра A/I *-изоморфна *-алгебре А΄.

Обратно, отображение х → [х] каждого элемента хА в содержащий его класс вычетов по I есть *-гомоморфизм алгебра А на A/I.

§ 2. Представления

2.1. Определения и простейшие свойства представлений.

Определение 2.1. Пусть А - *-алгебра, Н – гильбертово пространство. Представлением А в Н называется *-гомоморфизм *-алгебры А в *-алгебру ограниченных линейных операторов L(H).

Иначе говоря, представление *-алгебры А в Н есть такое отображение из А в L(H), что

К-во Просмотров: 478
Бесплатно скачать Дипломная работа: * Алгебры и их применение