Дипломная работа: * Алгебры и их применение

π (xy) = π (x) π (y), π (x*) = π (x)*

для любых х, y А и α С.

Размерность гильбертова пространства Н называется размеренностью π и обозначается dimπ. Пространство Н называется пространством представления π.

Определение 2.2. Два представления π1 и π2 инволютивной алгебры А в Н1 и Н2 соответственно, эквивалентны (или унитарно эквивалентны), если существует унитарный оператор U, действующий из гильбертова пространства Н1 в гильбертово пространство Н2, переводящий π1(х) в π2(х) для любого хА, то есть

U π1(х) = π2(х) U для всех х А.

Определение 2.3. Представление π называется циклическим, если в пространстве Н существует вектор f такой, что множество всех векторов π (х)f (для всех хА) плотно в Н. Вектор f называют циклическим (или тотализирующим) для представления π.

Определение 2.4. Подпространство Н1Н называется инвариантным, относительно представления π, если π (А)Н1Н1.

Если Н1 инвариантное подпространство, то все операторы π(х) (хА) можно рассматривать как операторы Н1. Сужения π(х) на Н1 определяют подпредставления π1 *-алгебры А в Н1.

Теорема 2.1. Если Н1 инвариантное подпространство Н, то его ортогональное дополнение также инвариантно.

Доказательство. Пусть f ортогонален к Н1, то есть (f, g) = 0 для всех gН1. Тогда для любого хА (π(х)f, g) = (f, π(х)*g) = (f, π(х*)g) = 0, так как π(х*)gН1. Следовательно, вектор π(х)f также ортогонален к Н1.

Обозначим через Р1 оператор проектирования в Н на подпространство Н1Н1.

Теорема 2.2. Н1 – инвариантное подпространство тогда и только тогда, когда все операторы представления перестановочны с оператором проектирования Р1 на Н1.

Доказательство. Пусть Н1 – инвариантное подпространство и fН1, но также π(х)f Н1. Отсюда для любого вектора fН

π(х)Р1f Н1

следовательно, Р1π(х)Р1f = π(х)Р1f ,

то есть Р1π(х)Р1 = π(х)Р1.

Применяя операцию инволюции к обеим частям этого равенства и подставляя затем х* вместо х, получаем, что также

Р1π(х)Р1 = Р1π(х).

Следовательно, Р1π(х) = π(х)Р1; операторы Р1 и π(х) коммутируют.

Обратно, если эти операторы перестановочны, то для fН1

Р1π(х)f = π(х)Р1f = π(х)f ;

Следовательно, также π(х)f Н1. Это означает, что Н1 – инвариантное подпространство.

Теорема 2.3. Замкнутая линейная оболочка К инвариантных подпрост- ранств есть также инвариантное подпространство.

Доказательство. Всякий элемент g из К есть предел конечных сумм вида

h = f1 + … + fn, где f1, …, fn – векторы исходных подпространств. С другой стороны, π(х)h = π(х)f1 +…+ π(х)fn есть сумма того же вида и имеет своим пределом π(х)g.

2.2. Прямая сумма представлений. Пусть I – произвольное множество. Пусть (πi)iI - семейство представлений *-алгебры А в гильбертовом пространстве Нi (iI). Пусть

|| πi (х) || ≤ сх

где сх – положительная константа, не зависящая от i.

Обозначим через Н прямую сумму пространств Нi, то есть Н = Нi. В силу (2.1.) можно образовать непрерывный линейный оператор π(х) в Н, который индуцирует πi (х) в каждом Нi. Тогда отображение х → π(х) есть представление А в Н, называемое прямой суммой представлений πi и обозначаемое πi или π1…..πn в случае конечного семейства представлений (π1…..πn). Если (πi)iI – семейство представлений *-алгебры А, совпадающих с представлением π, и если CardI = c, то представления πi обозначается через сπ. Всякое представление, эквивалентное представлению этого типа, называется кратным π.

К-во Просмотров: 477
Бесплатно скачать Дипломная работа: * Алгебры и их применение