Дипломная работа: Аналіз можливих схем електрохімічних генераторів для автономних джерел електричної енергії

Характеристики основних накопичувачів енергії

з/п

Типи накопичувачів ККД, % Виділяєма енергія, кВт ч/м3 Виділяєма потужність, Вт/кг Виділяєма енергоємність, кДж/кг Довговічність при глибині розряду
1 Інерційні 90 60-150 >104 10-60000 >105
2 Свинцево-кислотні 75 30-60 500 64 300-500
Нікель-кадмієві 75 70-100 200 110 1000-3000
Окиснювально-відновлювальні 75 15-60 - - -
Літієві 75-80 40-1000 - - 10 років
3 ГАЕС 75 300-500 >104 28 -
4 Молекулярні накопичувачі енергії 95 0.2 104 1-10 104 -106
5 Накопичувачі тепла 30 600 - - -
6 Термоелектричні генератори 10 30 50 - -
7 ЕХГ 10 500-1000 500-1000 70-104 5000

2. БУДОВА І СКЛАД ЕЛЕКТРОХІМІЧНОГО ГЕНЕРАТОРА

Серед важливіших проблем енергетики особливе місце займають проблеми безпосереднього перетворення хімічної енергії палива в електричну енергію. ЕХГ суттєво відрізняються від інших перетворювачів енергії, тому що енергія хімічної реакції безпосередньо перетворюється в електричну енергію, минаючи проміжну стадію перетворення її в теплоту. Тому ККД сучасних ЕХГ досягає 70-80%. Основною складовою частиною ЕХГ є паливний елемент. Для одержання необхідних значень напруги і струму паливні елементи об’єднуються у батареї.

На цей час достатньо розроблені і знаходять застосування в основному водень кисневі паливні елементи з пористими електродами (лужний електроліт) або з іонообмінними (кислий електроліт).

Паливні елементи першого типу (рис.2.1) мають два електрода, простір між якими заповнений електролітом. До одного електрода (анода) подається газоподібний водень, а до другого (катода) – кисень. Позитивні іони водню переходять у розчин і анод заряджається негативним зарядом. Внаслідок дії електростатичного притягання між негативно зарядженим анодом і позитивно зарядженими іонами водню на поверхні розділу електрод-розчин виникає подвійний електричний шар, позитивна сторона якого знаходиться у розчині, а негативна – у металі. Різниця потенціалів між сторонами називається електродним потенціалом. Навколо катода також виникає подвійний електричний шар, тому що негативно зарядженні іони кисню утримуються позитивно зарядженим катодом. При підключенні споживача збиток електронів з анода починає переходити до катоду, здійснюючи корисну роботу в зовнішньому ланцюгу. Коли щезнуть збиточні електрони, іони водню почнуть переходити у глиб розчину.


Рис. Схема паливного елемента

Порушення рівноваги між атомами і іонами палива приведе до виникнення нових іонів і електронів. Безперервний процес іонізації окислювача забезпечується переходом електронів до катоду.

Таким чином, в паливних елементах реакція йде не між атомами і молекулами, а між іонами. Етапи реакції:

1. Під впливом каталітичних властивостей анода молекули водню розпадаються на атоми і іонізуються з утворенням іонів і електронів

.

2. Електрони через споживач енергії переходять на катод, де створюються негативні іони кисню

.

3. Іони кисню переходять у розчин електроліту і створюють іони гідроксилу

.

4. Іони гідроксилу переміщуються у розчині електроліту від катода до анода і створюється кінцевий продукт реакції – вода

.

Для того, щоб не знижалася концентрація електроліту, необхідно постійно відводити воду.

Схема паливного елемента з іонообмінною мембраною приведена на рис.2.2. В такому елементі газові простори поділені мембраною, яка пропускає іони водню, але не пропускає молекули кисню і гідроксильні групи „ОН”.

Рис. Схема паливного елемента з іонообмінною мембраною

Між поверхнею мембрани і пористими токозйомниками нанесений шар каталізатора, тобто іонообмінна мембрана виконує роль твердого електроліту. При „кислотній” мембрані вода створюється на стороні окислювача і виводиться спеціальними пристроями.

Таким чином, процес генерування енергії в паливних елементах описується, як процес обміну електронами між паливом і окислювачем з утворенням нового хімічного сполучення.


3 АНАЛІЗ РОБОЧОГО ПРОЦЕСУ ПАЛИВНИХ ЕЛЕМЕНТІВ

Відповідно з першим законом термодинаміки, щодо хімічних реакцій, змінювання повної внутрішньої енергії системи DUn дорівнюється теплоті хімічної реакції Q і здійсненої при цьому роботі LS

DUn =Q+LS . (3.1)

Під повною внутрішньою енергією розуміють суму фізичної Uф і хімічної Qx її частин

К-во Просмотров: 341
Бесплатно скачать Дипломная работа: Аналіз можливих схем електрохімічних генераторів для автономних джерел електричної енергії