Дипломная работа: Аналіз та розробка LED-драйвера
Світлодіодні еквіваленти ламп призначені для заміни ламп розжарювання, галогенних або люмінесцентних ламп і випускаються з такими ж патронами. Ці світлодіодні лампи повинні відповідати існуючим форм-факторам і бути сумісними з існуючою інфраструктурою.
Світлодіоди для дистанційно керованого освітлення мають більшу гнучкість, коли потрібно міняти яскравість світіння й колір. Більше того, використання бездротових систем дистанційного керування або керування з передачею даних по мережі змінного струму сприяє появі великої кількості нових областей застосування світлодіодів.
Мало хто буде заперечувати той факт, що ринок світлодіодних еквівалентів традиційних ламп сьогодні — сама швидкозростаюча область застосування світлодіодних освітлювальних пристроїв. Причина настільки швидкого росту досить прозора: для цих світлодіодних аналогів не потрібна нова електрична інфраструктура ( тобто, проводка, трансформатори, регулятори яскравості й патрони), що дає значні переваги новій технології.
Вбудовування світлодіодних ламп в існуючу інфраструктуру вимагає від розроблювачів рішення двох принципових проблем:
- Форм-Фактор. Світлодіодні лампи повинні відповідати форм-факторові колишнього джерела світла.
- Електрична сумісність. Світлодіодні лампи повинні працювати коректно й без мерехтінь в існуючій електричній інфраструктурі.
Існуючий форм-фактор накладає на конструкцію світлодіодної лампи як фізичні ( тобто, плата драйвера повинна бути досить малою), так і теплові обмеження. Ці обмеження самі по собі представляють проблему при створенні конструкції лампи-заміни (наприклад, форм-фактори PAR, R і А). І цю проблему, зокрема, важко розв'язати у випадку малих форм-факторів, таких як MR16 і GU10.
Розміри важливі при конструюванні лампи-заміни, але найчастіше більш критичними є теплові обмеження. Світлодіоди випромінюють тільки видиме світло, вони не випромінюють енергію у вигляді інфрачервоного випромінювання, як інші джерела світла. Таким чином, хоча енергетична ефективність світлодіодів вище, чим у ламп розжарювання або галогенних ламп, вони розсіюють набагато більше тепла за допомогою теплопровідності.
Розсіювання тепла — це також основний фактор, що обмежує світловий потік, який може створити лампа. Сучасні світлодіодні технології навряд чи в стані досягтися рівня яскравості, прийнятного для основного ринку. Для розробки комерційно успішних виробів необхідно подолати обмеження по яскравості й, отже, по відводу тепла.
Із проблемою розсіювання тепла, що виділяється, логічно зв'язане питання часу служби драйверної плати. Щоб випромінювати більше світла, лампа повинна працювати при досить високих температурах (+80...+100°С). При таких температурах ресурс драйверної плати може стати обмеженням для всієї лампи. Найбільшою проблемою, зокрема, є електролітичні конденсатори. Оскільки при таких температурах вони швидко висихають, то термін служби цих конденсаторів не перевищить декількох тисяч годин, і вони стануть обмежуючим фактором для всієї лампи. Оскільки головною маркетинговою перевагою світлодіодних ламп є їхня довговічність, то проблема відносно невеликого терміну служби електролітичних конденсаторів стає однією з основних проблем для розроблювачів ламп. Відсутність електролітичних конденсаторів збільшує час служби ламп у середньому від 10000 до 90000 годин. Відсутність електролітичних конденсаторів також веде до зменшення габаритів схеми, тому плата драйвера може бути встановлена у світлодіодні лампи, призначені для заміни традиційних ламп із малими формами-факторами.
Для узгодження з електричною інфраструктурою світлодіодні лампи повинні коректно працювати в існуючих системах освітлення, у яких використовуються пристрої регулювання яскравості з фазовим керуванням (симисторні або імпульсні регулятори) і електронні трансформатори. Між лампою й мережею змінної напруги 120/230 В може стояти регулятор яскравості, виконаний на симисторі. Такі регулятори спроектовані для роботи з лампами розжарювання або галогенними лампами, які являють собою повністю резистивне навантаження. Драйвер в еквівалентній світлодіодній лампі, загалом кажучи, не є чисто резистивним навантаженням, до того ж він відрізняється досить нелінійною характеристикою. Через мостовий випрямляч на його вході проходять короткі, потужні кидки струму в моменти, коли хвиля вхідної змінної напруги досягає позитивного або негативного максимуму. Така поведінка драйвера світлодіодної лампи не дає регулятору на симисторі правильно працювати, оскільки не забезпечується необхідний стартовий струм та струм утримання. У результаті регулятор або некоректно включається, або відключається в процесі роботи, а світлодіодна лампа мерехтить неприйнятним способом.
Для ламп, розрахованих на змінну напругу 12 В, ситуація ще більш складна, тому що лампа може підключатися до мережі через електронний трансформатор і імпульсний регулятор яскравості. І знову ж, світлодіодна 12-вольтова лампа, у драйвері якої використовується традиційний мостовий випрямляч і DC/ DC-перетворювач, мерехтить через несумісність із трансформатором і регулятором яскравості.
Як говорилося вище, світлодіодні лампи надають розроблювачам більше творчого простору, оскільки дозволяють регулювати яскравість і міняти колір світіння. Такі можливості роблять їх ідеальними для застосування в архітектурнім підсвічуванні, у системах внутрішнього освітлення, а також у регульованих енергозберігаючих системах вуличного освітлення. Для всіх цих застосувань потрібна технологія дистанційного керування яскравістю світлодіодних ламп. Щоб застосування мало успіх на ринку, витрати на модернізацію інфраструктури для переведення систем освітлення на нові світлодіодної технології повинні бути мінімізовані. Не дивно, що рішення, які дозволять використовувати існуючу інфраструктуру без її переробки, імовірно, стануть першими кандидатами для проникнення на ринок.
По оцінках, при переході на світлодіодне освітлення з дистанційним керуванням найбільш витратною справою буде прокладка дротів керування світлодіодними лампами. На щастя, є дві технології, які дозволяють відмовитися від настільки дорогої модернізації: світлодіодними лампами можна управляти за допомогою бездротового зв'язку або через існуючу мережу змінної напруги, використовуючи технологію PLC (Power Line Communication — зв'язок по проводах електричної мережі). Технологія PLC дозволяє передавати сигнали керування на великі відстані, але це може виявитися проблематичним, якщо на шляху проходження потоку даних по мережі змінного струму зустрічаються переривники або трансформатори. У той же час для бездротового зв'язку такої проблеми не існує, але відстань, на яку можуть бути передані керуючі сигнали, може виявитися обмеженою, якщо для цих цілей використовуються вільні частотні діапазони. Іноді найкращим рішенням є сполучення цих двох технологій: зв'язок по проводах електромережі для пристроїв, які не розділені між собою трансформаторами, і бездротовий зв'язок як спосіб обійти трансформатори.
1.2 Огляд драйверів живлення світлодіодних світильників
Розробка світильників на основі потужних світлодіодів з появою нових надійних елементів стає усе більш актуальною. Багато фірм - виробників радіокомпонентів пропонують рішення для створення джерел струму й різні мікросхеми драйверів для живлення світлодіодів. Фірма STMicroelectronics пропонує декілько вдалих схемотехнічних рішень для реалізації живлення світлодіодів.
По суті своєї драйвери світлодіодів представляють собою DC-DC перетворювачі, що стабілізують не тільки напругу, а струм через світлодіоди. Структура драйвера залежить від діапазону вхідної напруги й від кількості світлодіодів, що можуть живится від драйвера. Внутрішня структура драйвера може бути різна, але, як правило, він складається з наступних функціональних блоків:
– DC-DC-перетворювач;
– Регульовані або навіть програмувальні лінійні джерела струму (один або кілька каналів);
– ШІМ-контролери для індивідуального або загального керування струмом через світлодіоди;
– Інтерфейс керування;
– Блок діагностики для виявлення обривів у колі підключення світлодіодів, коротких замикань і ін.
Цікавим рішенням є драйвери LED7706, LED7707 від компанії STMicroelectronics. Мікросхеми призначено для живлення шести лінійок послідовно включених світлодіодів (до 10 світлодіодів у кожному ланцюжку) струмом 30 або 85 мА, відповідно.
Структура цих мікросхем однакова: до їхнього складу входить високоефективний підвищувальний перетворювач, який працює на частоті 660 кГц. Він має можливість зміни робочої частоти в межах від 200 кГц до 1 МГц за допомогою зовнішнього резистора й шість генераторів струму.
Вихідна напруга підвищувального перетворювача змінюється адаптивно таким чином, щоб найменше спадання напруги на одному із внутрішніх джерел струму було рівне їхній опорній напрузі(400 мВ). Вихідна напруга може змінюватися в діапазоні від 4,5 В до 36 В.
Вихідний струм у кожному каналі може бути заданий одним зовнішнім резистором. Яскравість світіння світлодіодів може змінюватися, для цього мікросхема має спеціальний вхід для регулювання. Основні параметри мікросхем наведені у таблиці 1.
Таблиця 1 - Основні параметри мікросхем
Найменування | Вхідна напруга, ( В ) | Вихідна напруга, ( В ) | Вихідний струм, (мА) | Число каналів | ККД, ( %) | Діммінг | Робоча частота, (МГц ) |
LED7706 | 4,5 - 36 | до 36 | до 30 | 6 | 93 | PWM | 0,2...1 |
LED7707 | 4,5 - 36 | до 36 | до 85 | 6 | 93 | PWM | 0,2...1 |
Схема включення цих мікросхем показана на рисунку 1.
Рисунок 1 - Схема включення мікросхеми LED7706