Дипломная работа: Аналіз та розробка LED-драйвера
Тут треба враховувати потужність цих пристроїв. При побудові джерела живлення для світлодіодного світильника потужністю 25 Вт и більше необхідно враховувати вимогу - наявність у блоці живлення коректора коефіцієнта потужності. Застосування коректора коефійієтта потужності призводить до подвійного претворення напруги. Подвійне перетворення негативне позначається на ціні й ККД готового джерела. Крім того, робота двох перетворювачів при високих напругах вимагає від розроблювача високої кваліфікації на етапі проектування. А отже, готовий виріб може виявитися неналежного рівня надійності. А це одне з головних вимог для світлодіодних джерел живлення.
Для малопотужних джерел живлення світлодіодів від мережі коректор не потрібний, але й в цьму випадку може застосовуватися подвійне перетворення напруги за принципом: понижувальний стабілізатор напруги – понижувальний стабілізатор струму. Такі рішення використовуються у випадках необхідності отримання від джерела живлення світлодіодів спеціальних функцій, наприклад, можливості регулювання яскравості світіння.
Для простого розв'язку завдання побудови джерела живлення світлодіодного світильника компанія Stmicroelectronics виробляє мікросхему L6562А, за допомогою якої можна побудувати однокаскадний AC-DC перетворювач, що поєднує коректор потужності й понижувальний Fly-back перетворювач. Це дозволяє заощадити на найдорожчих компонентах - моткових виробах і силових напівпровідникових елементах. Відповідно збільшується ККД джерела, зменшуються тепловиділення, габарити й вага.
Один із прикладів застосування мікросхеми L6562 показаний на рисунку 6.
Рисунок 6 - Приклад застосування мікросхеми L6562 для живлення світлодіодів
Як видно, на схемі високовольтний перетворювач виконаний за схемою зворотноходового перетворювача, крім цього мікросхема L6562А виконує функцію коректора потужності. Через вхід MULT з резистивного дільника мікросхема одержує сигнал одного півперіоду вхідної напруги, отриманого після вхідного випрямляча. Форма вхідної напруги для ШІМ перетворювача є опорним сигналом, і струм через силовий ключ задається відповідно до отриманої форми вхідної напруги, тому споживаний перетворювачем струм має синусоїдальну форму й збігається по фазі з живлячою напругою. На виході перетворювача одержуємо стабілізовану напругу за допомогою підсилювача неузгодженості на мікросхемі TL431. Є можливість організувати опторазв’язку, а можна обійтися й без неї. Далі пропонується використовувати кілька окремих стабілізаторів струму для кожної лінійки світлодіодів.
Особливостями застосування мікросхеми L6265 є сполучення в одному кристалі функції AC-DС перетворювача й коректора потужності, низький коефіцієнт гармонік у мережі живлення, простота побудови схем і використання, високий ККД, низька вартість дизайну. Пристрої з використанням мікросхеми L6265 доцільно використовувати у драйверах світлодіодних світильників для вуличного та архітектурного освітлення.
При проектуванні джерела живлення світлодіодного світильника завжди постає питання яке джерело живлення використовувати для живлення - гальванично розв'язане або гальванично пов'язане з первинною мережею. Прямої заборони на використання того або іншого немає. Безпечність світильників регулює нормативний документ ДС Р МЭК 60598-1-2003 «Світильники. Загальні вимоги й методи випробування», відповідно до якого всі світильники діляться на три класи по захисту від ураження електричним струмом.
Клас I- захист від ураження електричним струмом забезпечується основною ізоляцією й приєднанням доступних для дотику провідних деталей до захисного (заземленого) проводу стаціонарної проводки таким чином, щоб доступні провідні деталі не могли стати струмоведучими у випадку ушкодження основної ізоляції;
Клас II- світильник, у якому захист від ураження електричним струмом забезпечується основною ізоляцією, застосуванням подвійної або посиленої ізоляції, і, який не має пристрою для захисного заземлення або спеціальних засобів захисту в електричній установці;
Клас III- світильник, у якому захист від ураження електричним струмом забезпечується застосуванням безпечної наднизької напруги живлення (по даному документу до 50В включно).
Для кожного із цих класів установлені вимоги до електричної міцності ізоляції: Клас I - 2U+1000 В; Клас II - 4U+2750 В; Клас III - 500 В, де U - напруга живлення світильника, В.
При розробці самого світильника й джерела живлення до нього з використанням AC/DС-перетворювача важливо забезпечити необхідну електричну міцність виробу вибором матеріалів і конструктивних рішень. Наприклад, виріб по класу I може мати гальванічний зв'язок з мережею, але при цьому необхідно, щоб доступні для дотику струмопровідні деталі мали захисне заземлення й комплектуючі й матеріали змогли забезпечити напругу пробою більш 1440 В між вхідною клемою й корпусом виробу. Як варіант, можна застосувати у виробі джерело живлення, гальванічно не пов'язане з мережею, а необхідне значення напруги пробою (1,44; 3,63 кВ) забезпечити міжшаровою ізоляцією в трансформаторі.
2 Спеціальна частина
2.1 Характеристика елементної бази
2.1.1 Мікросхема VIPer17
На ринку виробників імпульсних джерел живлення (ІДЖ) широку популярність набули мікросхеми, вироблені фірмою Stmicroelectronics. Серед інших аналогів їх відрізняє схемотехнічно бездоганна структура, яка дозволяє конструкторам ІДЖ легко й швидко створювати прилади, що вимагають мінімального числа зовнішніх елементів «обв'язки» ІС і в той же час повністю відповідати твердим вимогам енергозберігаючої технології проектування (Blue Angel Eco).
Інтегральний контролер ІДЖ Vlperl7H(L) увібрав у себе ряд інноваційних технічних рішень. Розроблювачі розмістили 26 композитних логічних блоків на одному кристалі, що дозволило розширити функціональні можливості ІС.
Інтегральний контролер ІДЖ Vlperl7H(L) містить силовий комутатор на основі МДН транзистора й керуючий ШІМ. Дана мікросхема виробляється у двох варіантах конструктивного виконання: у корпусах DIP7 (Viperl7LN/Viperl7HN) і SO16-narrow (Viper17LD/Viper17HD). Індекси H (High) і L(Low) у найменуванні мікросхеми вказують на частоту вбудованого генератора - високу 115 кГц і низьку 60 кГц відповідно. Призначення виводів мікросхем презентовано в таблиці 4.
світлодіодний освітлення живлення мікросхема
Таблиця 4 - Призначення виводів мікросхем Viper17
DIP7 | SO16 | Найменування | Функціональне призначення |
1 | 1-4 | GND | Загальний вивід ІМС і джерела живлення |
2 | 5 | VDD | Напруга живлення контролера, а також вихід зарядного струму для зовнішнього конденсатора при пуску ІДЖ |
3 | 6 | CONT | Керуючий вхід, що забезпечує роботу контролера у двох режимах: • установка граничного значення струму польового транзистора в комутуючому імпульсі; • контроль вихідної напруги |
4 | 7 | FB | Керуючий вхід для установки коефіцієнта заповнення комутуючих імпульсів |
5 | 10 | BR | Захист від зниження сіткової напруги |
7,8 | 13-16 | DRAIN | Вивід стоку польового транзистора |
Джерела живлення, виконані на мікросхемі Viperl7N(D), із зовнішнім тепловідводом здатні забезпечити вихідну потужність ІДЖ до 12 Вт в інтервалі сіткової напруги 176...264 В и до 7 Вт в інтервалі 85...265 В. Якщо роль додаткового тепловідводу на друкованій платі виконує фольгірований майданчик площею приблизно 20 мм2, що перебуває в тепловому й електричному контакті з виводами 7,8 (DIP7) і 13 -16 (SO16) ІС, тоді потужність джерела живленні в стандартному й розширеному інтервалі сіткової напруги становить 9 і 5 Вт відповідно.
Рисунок 7 - Схема зворотноходового ІДЖ на основі ІС Viperl7
На рисунку 7 представлена типова електрична схема зворотноходового (Flyback) ІДЖ на основі ІС Viperl7. Контролер ШІМ, комутуючий транзистор, трансформатор, вихідний випрямляч, регульований стабілітрон U2 і оптоелектронний перетворювач, з'єднаний з виводом FB мікросхеми, утворюють замкнений контур регулювання вихідної напруги. При збільшенні вихідної напруги до необхідного значення відкривається стабілітрон U2, діод, що випромінює в оптоелектронному перетворювачі OPTO, впливає на перехід емітер-колектор фототранзистора, змінюючи його еквівалентний опір.
Контролер ШІМ регулює тривалість комутуючих імпульсів таким чином, щоб значення еквівалентного опору відкритого фототранзистора відповідало необхідній напрузі на навантаженні.
Щоб пояснити функціональні особливості контролера, розглянемо внутрішню архітектуру ІС, показану у додатку А, і властивості окремих її блоків.
Силовий комутатор в ІС виконаний на основі МДН-транзистора, що відрізняється особою електричною міцністю: пробивна напруга каналу стік-джерело становить не менш 800 В. Це гарантує безпечне функціонування приладу у всьому інтервалі вихідної потужності й швидкості зміни напруги на стоці du/dt. Опір каналу транзистора при температурі 25°С у включеному стані не перевищує 25 Ом. На кристалі транзистора сформований спеціальний резистивний елемент Rsens, що дозволяє ефективно відслідковувати максимальне значення струму в кожному імпульсі комутації. При зниженні живлячої напруги менше 8 В блок SUPPLAY&UVLO виключає транзистор, захищаючи його від випадкового включення.
Високовольтний генератор пускового струму Istart-up у якості джерела використовує напругу на виводі стоку (DRAIN). Запуск можливий тільки після того, як напруга на стоці перевищить граничне значення 80 В, тоді замкне вимикач HV_ON, і на підключений до виводу VDD конденсатор С3 почне надходити зарядний струм 3 мА. Після зростання напруги VDD понад 14 В вимикач HV_ON розмикається. Живлення мікросхеми здійснюватиметься від допоміжної обмотки трансформатора імпульсами, що випрямляються діодом D2 і згладжуються конденсатором С3.
Блок живлення й контролю напруги SIPPLAY&UVLO при збільшенні напруги живлення понад 14 В подає живлення на всі блоки ІС, а також формує ряд опорних напруг, необхідних для роботи вузлів мікросхеми. Автогенератор OSCILLATOR через логічний блок TURN-ON LOGIC, керуючий режимом формування комутуючих імпульсів, впливає на вхід S RS-Тригера, встановлюючи на виході Q рівень логічної 1.
Для зниження спектральної щільності перешкод, створюваних комутуючими імпульсами струму стоку в транзисторі й трансформаторі, центральна частота автогенератора примусово перебудовується з періодичністю 250 Гц у смузі 115 ± 8 (або 60 ± 4) кГц. При цьому загальна енергія центральної спектральної складової комутуючої частоти розподіляється серед гармонік з меншою амплітудою, що сприяє зниженню рівня електромагнітних завад.