Дипломная работа: Электромагнитные волны в волноводном тракте

(1.1)

построена при и при . Очевидно,.

Говорят, что функция (1.1) описывает волну. Иногда волны этого рода называют «недеформируемыми»; имеется в виду, что временной закон во всех точках пространства — с точностью до сдвига — одинаков. Волна называется плоской и однородной. Дело в том, что, положив, мы задаем плоскость, на которой мгновенное значение функции постоянно. Любую такую плоскость называют фронтом волны. В некоторый момент фронт, для которого движется вдоль оси со скоростью ,. Плоскую однородную волну, распространяющуюся в противоположном направлении, следует описывать при помощи выражения (1.1) с изменением знака

(1.1а)

Обратимся к однородному волновому уравнению

(1.2)

Если пользоваться декартовой системой координат и рассматривать только процессы, не зависящие от и , то волновое уравнение примет вид

(1.3)

Путем непосредственной подстановки нетрудно убедиться, что функции, выражаемые формулами (1.1) и (1.1а), являются решениями одномерного волнового уравнения (1.3).

Общее решение уравнения (1.3) выражает формула

(1.4)

где и — произвольные дважды дифференцируемые функции. Это наложение двух плоских однородных недеформируемых: волн, распространяющихся в противоположных направлениях.

1.2 Гармонические волны

Если в (1.1) взять такую функцию, что то в каждой точке пространства процесс будет иметь характер гармонических колебаний

или

(1.5)

Такого рода плоская однородная волна называется гармонической, а введенный параметр — волновым числом.

Как видно, полная фаза гармонических колебании в пространстве при заданном убывает пропорционально ; значения функции при этом периодически повторяются. Пространственный период называют длиной волны. Очевидно, для произвольного должно быть . Поэтому из (1.5) следует, что , т. е.

(1.6)

а также

(1.7)

где —частота процесса.

Чтобы составить, более наглядное представление о гармонической волне, положим сначала и получим т.е. функцию, характеризующую распределение величины вдоль оси в начальный момент . Эта косинусоида (кривая на рис. 1.2а) представляет собой как бы «мгновенный снимок» процесса. Выберем следующий фиксированный момент и для него запишем

где то есть не что иное, как расстояние, пройденное волной за истекшее время . «Мгновенный снимок», соответствующий моменту , дает, таким образом, косинусоиду, смещенную по оси на расстояние (кривая 2 на рис. 1.2а). Итак, распространение гармонической волны — это движение косинусоидального распределения и вдоль прямой с постоянной скоростью.

Плоская однородная гармоническая волна выражается одним из частных решений одномерного волнового уравнения (1.3). Метод комплексных амплитуд приводит (1.3) к виду

(1.8)

Это не что иное, как одномерная форма уравнения Гельмгольца. Его общее решение можно выразить следующей суммой:

К-во Просмотров: 321
Бесплатно скачать Дипломная работа: Электромагнитные волны в волноводном тракте