Дипломная работа: Электромагнитные волны в волноводном тракте
( и
—комплексные константы:
и
).
Рисунок 1.2
Умножая комплексную амплитуду на
и отделяя вещественную часть, находим
(1.10)
Это наложение двух гармонических волн, распространяющихся в противоположных направлениях. Гармоническая волна, движущаяся вдоль оси , возникает как частное решение при
.
В качестве другого частного решения рассмотрим наложение бегущих навстречу волн с одинаковыми амплитудами и начальными фазами
. При этом из (1.10) получаем
(1.11)
Такой процесс называется стоячей волной. Его отличительной особенностью является синфазность колебаний. Действительно, в каждой области постоянства знака множителя фаза зависит только от времени (это величина
или
). В зависимости от
косинусоидального изменяется амплитуда гармонических колебаний
. Ряд «мгновенных снимков» процесса для разных моментов времени дает картину, показанную на рис. 1.2б; косинусоидальное распределение и вдоль оси
не движется (в отличие от бегущей волны), а испытывает «пульсации». При этом расстояния между соседними неподвижными нулями (узлами) равны
; таковы же и расстояния между соседними максимумами (пучностями).
1.3 Поляризация и наложение волн
Для описания ориентации волны, распространяющейся в заданном направлении, существует понятие поляризации. Плоскостью поляризации называют плоскость, проходящую через направление распространения и параллельную вектору . Таким образом, всякое наложение двух волн с произвольными амплитудами и фазами есть также некоторая электромагнитная волна. Любая из плоскостей, проходящих через ось
, может в равной мере быть плоскостью поляризации.
Существенно, что при распространении волны плоскость ее поляризации может и не оставаться неподвижной, т. е. волна может изменять свою ориентацию относительно направления распространения. Действительно, рассмотрим электрические поля двух ортогонально поляризованных волн одного направления и составим их наложение
(1.22)
Если фазы волн совпадают ( и
), то, как легко убедиться, наложение волн есть волна, поляризованная в неподвижной плоскости, составляющей угол
с плоскостью поляризации первой волны. Это плоская, или линейная, поляризация.
Картина оказывается иной, если фазы налагающихся волн различны. Пусть, например, при одинаковых амплитудах () фазовое различие составляет
. Полагая в (1.22)
и
, определим вектор
как
(1.23)
Определяя угол , указывающий положение плоскости поляризации волны, имеем
(1.24)
т. е. угол наклона вектора к оси
не остается постоянным в пространстве и времени, а равен
. Как видно, в каждой фиксированной плоскости
вектор
вращается с угловой скоростью
, а в фиксированный момент времени
распределение поля вдоль оси таково, что конец вектора
«скользит по винтовой линии». Это волна круговой поляризации, точнее, левой круговой поляризации. Правая круговая поляризация соответствует случаю
и
(вращение в противоположном направлении).
Если налагаемые волны имеют произвольные амплитуды и фазы, то результирующий волновой процесс есть волна эллиптической поляризации. Вращаясь, вектор при этом изменяется по величине и описывает эллипс. Ориентация и эксцентриситет эллипса определяются соотношением комплексных чисел
и
.
Наложение противоположно направленных волн одинаковых амплитуд вызывает процесс, называемый стоячей волной. Особенностью электромагнитной стоячей волны является характерное пространственное и фазовое смещение распределений и
.
Рассмотрим, например, стоячую волну, поляризованную в плоскости , Положив
и
находим
(1.25)
или, переходя от комплексных амплитуд к векторам поля в случае идеального диэлектрика (,
):
(1.26)
Узлы (или пучности) стоячих волн векторов и
сдвинуты на четверть волны. Во времени же эти поля смещены на
по фазе. Такая стоячая волна в среднем не переносит энергии, как легко убедиться, вычисляя среднюю величину вектора Пойнтинга.
2. Резонансы и направляемые волны в плоских системах
2.1 Плоский резонатор
Распределение поля, возникающее в идеальном диэлектрике при нормальном падении волны на идеально проводящую плоскость, стоячая волна обладает тем свойством, что в любой плоскости, расположенной на расстоянии
от границы раздела сред, выполняется условие
. Следовательно любую из таких плоскостей можно заменить границей с идеальным проводником, так что в «отсеченном» диэлектрическом слое сможет существовать прежнее поле.