Дипломная работа: Элементы статистики комбинаторики и теории вероятностей в основной школе
Исходя из этого можно выделить следующие задачи , реализация которых позволяет достичь поставленную цель.
· Необходимо определить содержание материала по каждому из направлений: комбинаторика, статистика, теория вероятностей.
· Проанализировать связи между этими направлениями и определить последовательность или параллельность их изучения.
· По каждому классу определить содержание и разработать методику обучения учащихся каждому из названных разделов стохастики.
Для реализации данных задач используются следующие средства .
· Изучение школьных учебников, статей, психолого-педагогической и методической литературы по данной теме.
· Изучение стандартов образования по данной теме.
· Анализ школьных учебников, выявление преимущества тех или иных учебных пособий.
· Изучение имеющегося опыта преподавания в школе данной темы.
Глава 1.
§1 Анализ учебно-методической литературы по теме исследования.
1. Инструктивные письма.
Один из важнейших аспектов модернизации содержания математического образования состоит во включении в школьные программы элементов статистики и теории вероятностей. Это обусловлено ролью, которую играют вероятностно-статистические знания в общеобразовательной подготовке современного человека. Без минимальной вероятностно-статистической грамотности трудно адекватно воспринимать социальную, политическую, экономическую информацию и принимать на ее основе обоснованные решения.
Изучение элементов комбинаторики, статистики и теории вероятностей в основной школе станет обязательным после утверждения федерального компонента государственного стандарта общего образования. Но в связи с тем, что внедрение в практику работы этого нового материала требует нескольких лет и нуждается в накоплении методического опыта, Министерство образования РФ рекомендовало образовательным учреждениям начать преподавать курс «Элементы комбинаторики, статистики и теории вероятностей» в основной школе с 2003/2004 учебного года.
При этом предлагается ориентироваться на следующее содержание:
· Решение комбинаторных задач: перебор вариантов, подсчет числа вариантов с помощью правила умножения.
· Представление данных в виде таблиц, диаграмм, графиков. Диаграммы Эйлера. Средние результаты измерений.
· Понятие и примеры случайных событий. Частота события, вероятность. Равновозможные события и подсчет их вероятности. Представление о геометрической вероятности.
Перечисленный круг вопросов представляет собой некоторый минимум, доступный учащимся основной школы и достаточный для формирования у них первоначальных вероятностно-статистических представлений. [25]
Государственным стандартом образования предусмотрен обязательный минимум, и изложены основные требования к уровню подготовки выпускников.
Для основного общего образования, по теме – Элементы логики, комбинаторика, статистика и теория вероятностей на данный момент установлен следующий обязательный минимум:
Множества и комбинаторика . Множества, элементы множества. Подмножества. Объединение и пресечение множеств. Диаграммы Эйлера. Примеры решения комбинаторных задач: перебор вариантов, правило умножения.
Статистические данные. Представление данных в виде таблиц, диаграмм, графиков. Средние результаты измерений. Понятие о статистическом выводе на основе выборки. Понятие и примеры случайных событий.
Вероятность. Частота событий, вероятность. Равновозможные события и подсчет их вероятности. Представление о геометрической вероятности.
Требования к уровню подготовки выпускника:
В результате изучения математики ученик должен знать и понимать вероятностный характер многих закономерностей окружающего мира, примеры статистических закономерностей и выводов.
В результате изучения элементов логики, комбинаторики, статистики и теории вероятностей учащийся должен уметь:
· Извлекать информацию представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики.
· Решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения.
· Вычислять среднее значения результатов измерений
· Находить частоту события, используя собственные наблюдения и готовые статистические данные
· Находить вероятность случайных событий в простейших ситуациях.