Дипломная работа: Философия математики
Таким образом, уже в исходном пункте своего развития теоретическая математика находится под активным воздействием острой борьбы двух основных типов мировоззрения - материалистического по своей основе мировоззрения милетской школы и религиозно-идеалистического мировоззрения Пифагора и его ближайших последователей. В разных мировоззренческих системах существенно иными оказываются: понимание природы математического знания, выбор объектов исследований, отношение к прикладным задачам, то есть личные важнейшие стороны математической деятельности. В пределах пифагорейской школы происходит дальнейшее развитие математики, но внутренние законы математического познания здесь вступают в противоречия с рядом методологических установок (необходимость научного общения - с обетом молчания, объективный поиск истины - с авторитарностью, преклонением перед изречениями главы секты). Эволюция пифагореизма убеждает в том, что как бы искусно не увязывались математические знания с религиозно-мистическими воззрениями, они чужды последним; прогресс математики приводит к разрыву с ними. Если же в силу конкретных исторических условий методологические положения идеалистического характера последовательно выдерживаются, то математическая деятельность получает одностороннюю ориентацию, что в конечном итоге отрицательно сказывается на его прогресс. Имеет место не только активное и глубокое влияние мировоззрения на развитие математического познания, но и обратное воздействие; о его силе можно судить по тем последствиям, которые оказало открытие иррациональности на всю мировоззренческую систему пифагорейцев.
Однако упадок пифагореизма в греческой философии не привёл к полному исчезновению пифагорейских тенденций. Не признавая пифагореизма как учения о математических началах мира, можно признавать его как определённый метод аргументации. В этом плане он оказал громадное влияние на последующее развитие философской и научной мысли вплоть до XIX века. Пифагореизм в современной науке сохраняется как антологизация различного вида числовых совпадений. Подавляющее большинство учёных скептически относится к числовым сопоставлениям, однако именно числовое совпадение помогло Максвеллу открыть электромагнитную природу света. Как можно отделить здесь зёрна от плевел и возможно ли сделать это вообще. Древнее философское учение оказывается, таким образом, тесно связанным с тонкими проблемами методологии современной науки.
2. Взаимосвязь философии и математики от начала эпохи возрождения до конца XVII века
За тысячу лет, которую мы называем эпохой средневековья, в математике не произошло существенных переворотов, хотя математические и логические истины были постоянным объектом различных схоластических спекуляций. Философия математики так же стояла на мертвой точке: она не вышла за рамки пифагореизма в его платонистской и неоплатонистской интерпретации. Только в XIV- XV веках в Европе началось возрождение творческого математического мышления в арифметике, алгебре и геометрии. Математика стала рассматриваться не как врожденное и абсолютное знание, а скорее как знание вторичное, опытно зависящее в своей структуре от некоторых внешних реальностей. Важными результатами естественнонаучного направления в философии эпохи Возрождения были методы экспериментально-математического исследования природы.
В период средневековья считалось, что центр Земли совпадает с центром Вселенной. Солнце, луна и звезды укреплены на прозрачных сферических оболочках и вращаются вокруг единого центра. Коперник на основании тщательных астрономических наблюдений и их математической обработки сделал вывод, что Земля вращается вокруг Солнца. Эту идею высказывали еще древние, но никто из предшественников Коперника не мог дать ей достаточно полного математического обоснования. Математическую форму изложения учения Коперника отличал и Джордано Бруно, который вышел за пределы солнечной системы, представив Вселенную как безграничную область, заполненную бесчисленными мирами. Кеплер, на основе широкого использования математики, открывал законы движения планет. Галилей подтвердил и развил учение Коперника. "Важно подчеркнуть, что одним из руководящих критериев, направлявших Галилея на пути к выработке именно этой мировоззренческой концепции была математика", - писал Кедровский О.И.
Таким образом, возникало новое научное мышление. Созданные в первые десятилетия XVII века работами Кеплера и Галилея фрагменты новой науки были изолированы, поскольку земные небесные движения рассматривались как качественно отличные друг от друга. Отсутствовала синтезирующая концепция, которая соединила бы законы Кеплера и Галилея. Существенную роль в решении этой задачи сыграли работы Р. Декарта. Мир представлялся Декарту заполненным материей пространства. Природа материи состоит в протяженности, все свойства материальных тел сводятся к преобразованию протяженности, а все движения - к механическому перемещению. Таким образом, природа мироздания определяется в конечном итоге математическими и механическими характеристиками. Влияние математики при решении важных философских проблем несомненно, но оно не выражается через выявление строгих количественных закономерностей.
Декарт создал метод координат, перебросив мостик между алгеброй и геометрией. Алгебраические задачи теперь можно решать геометрическими методами и наоборот. Очень важно также было систематизирование им математических обозначений и перевод математики на современный язык. Декарт рассматривал всю математику как теорию алгебраических уравнений. Он считал всю математику универсальной, позволяющей решать математические и нематематические проблемы - "нужно лишь следовать по тому же пути". Поворотным пунктом математики была Декартова переменная величина. Благодаря этому в математику вошли движения и тем самым диалектика и благодаря этому же стало немедленно необходимым дифференциальное и интегральное исчисление, которое тотчас и возникало и которое было и в целом завершено, а не изобретено Ньютоном и Лейбницем.
Однако уже самому Декарту приходится искать не алгебраические пути при решении некоторых задач. Требовалось изменить статус алгебры как универсального математического метода. В силу жесткой связи между математическим методом и общей методологией познания, такое изменение затрагивало основы философской системы.
И. Ньютон синтезирует многочисленные исследования, проведенные его предшественниками и им самим, и создает принципиально новую систему знаний о природе. Читая лекцию по теории света и цветов, он на основе измерительного математического опыта и математического расчета, делал вывод, что науку о цветах "следует почитать математической, поскольку она излагается математическим рассуждением". Ньютон в своих "Началах" впервые создал математическое естествознание о смысле математического изучения механических, физических и астрономических явлений, исходя из единого основания. Математика, согласно Ньютону, играет очень важную роль: ее понятия являются как бы прообразами и необходимыми компонентами фундаментальных понятий теоретического исследования. В "Началах" натурфилософские представления времени пространства, места и движения формализуются, в них выделяется математически точный компонент.
При решении некоторых физических задач Ньютону приходилось сталкиваться с проблемой проведения касательных к кривым. Им был разработан универсальный метод построения касательных - метод флюксий, являвшийся, по сути, методом нахождения производных. Создание теории флюксий Ньютона было осуществлено в органическом единстве математических знаний философских идей. Философские понятия выполнили синтезирующую роль по отношению к фактам математического знания.
Успехи, достигаемые на пути математизации естествознания, укрепляли веру в значимости математики. Появление работ Ньютона, как образно выразился Д.А. Граве, открыло эпоху перехода этой веры в полное внутреннее убеждение. Из сферы умозрительных натурфилософских рассуждений по средствам математики и опыта выводится обширная область явлений, которые теперь находят более скрытое объяснение в пределах конкретной науки. Широкое распространение получает мнение, что посредством математики и механики, которые разъяснили столь многое, можно объяснить всё. Когда же обнаружилась неспособность "математизированной метафизики" выполнять возложенные на неё функции, то это послужило одним из оснований для дискредитации всей системы механического материализма, повода для возрождения идеалистических и теологических позиций в науке. Подобного рода тенденция находит проявление в работах Г.В. Лейбница.
Одним из приверженцев новой науки становится Лейбниц. Он предсказывает неудовлетворение механической картиной мира и делает попытку изменить её. Великой заслугой немецкого мыслителя было то, что он, хотя и в теологической форме, но подходил к принципу неразрывной (и универсальной, абсолютной) связи материи и движения.
Но Лейбниц неправ, когда дополнение количества качеством по сути дела приводит как дополнение материального идеальным.
Тенденция дематематизации начал бытия, проводимая Лейбницем, поскольку она была продиктована стремлением найти более глубокое объяснение явлений действительности и установить более рациональное отношение между математикой и философией, имела прогрессивное значение.
Независимо от Ньютона Лейбниц так же пришёл к открытию дифференциального, а затем и интегрального исчисления. Многие основные черты нового метода математики выступили как конкретное преломление, примиритель к математическому познанию определяющих характеристик его философской методологии.
Воззрение Н. Коперника, Дж. Бруно, И. Кеплера, Г. Галилея, Р. Декарта, И. Ньютона и Г.В. Лейбница представляют основное течение формирования новой системы взглядов на мир. Наиболее ортодоксальными противниками этой линии были сторонники религиозно-схоластического миропонимания. Между теми и другими формировались и эволюционировали промежуточные направления, в большей или меньшей мере они равнялись на математику. Однако наиболее ярко последняя проявила себя именно в сочинениях рассмотренных выше учёных.
Успехи, достигнутые на пути широкого применения математических средств, на пути количественного анализа послужили поводом для распространения последнего за рамки допустимого. Использование математики в ряде случаев сопровождается абсолютизацией дедуцирования по сравнению с опытным исследованием, преувеличением роли количественного подхода и умалением значимости качественного анализа, неправомерной подменой мировоззренческих, философских принципов положениями математического естествознания, чрезмерное увлечение математикой в системе философского познания делает последний односторонним. Абсолютизация роли математики оказала отрицательное воздействие на прогресс науки, поскольку послужила монологическим источником возникновения на новой основе идеалистических воззрений.
Философский анализ у мыслителей новой эпохи не охватывает столь широкого спектра проблем, как период античности, особенно в логико-монологическом аспекте, но поставленные проблемы решаются в значительно более многообразных формах. Предлагаемые решения не столь строго аргументированы как в период античности, но они посвящены более оригинальным и продуктивным идеям. Философские проблемы математики в период античности имеют более чётко выраженный системный характер, так как они подверглись тщательной логической обработке. В данном случае зависимости между содержанием отдельных проблем, детерминируемость одних проблем другими носят неско?