Дипломная работа: Геометрии Галилея и Минковского как описания пространства-времени

.

Подобные соображения настоятельно склоняли математиков к мысли, что символам , и т.д. соответствуют некоторые реальные числа, хотя они и не могут быть выражены в виде отношения целых чисел. Удивление перед этими «невыразимыми» числами отразилось в их названии – иррациональные числа, т.е. числа, не поддающиеся разумному истолкованию (racio – разум). Именно, в противовес иррациональным числам, числа, которые могут быть выражены в виде отношения целых чисел, получили название рациональных.

К концу XIX в. была построена теория, истолковывающая рациональные и иррациональные числа с единой точки зрения (теория сечений Дедекинда) [15]. Объединение множеств рациональных и иррациональных чисел называется множеством вещественных (или действительных) чисел R. Каждому вещественному числу соответствует определенная точка на координатной оси, и каждой точке координатной оси соответствует определенное вещественное число.

Проблемы становления понятия вещественного числа поучительны для постижения еще более широкого представления о числе, каковым является число комплексное. Необходимость введения комплексных чисел связана с потребностью выразить результаты определенных операций над вещественными числами, не являющиеся вещественными числами. Не существует такого вещественного числа, квадрат которого был бы отрицательным числом. Поэтому в множестве вещественных чисел R нет квадратных корней (а следовательно, и корней любой четной степени) из отрицательных вещественных чисел. Так как квадрат любого вещественного числа есть неотрицательное число , символ удобно применять для обозначения любого отрицательного вещественного числа. Задача извлечения квадратного корня из числа сводится к задаче извлечения квадратного корня из отрицательной единицы:

.

От Леонарда Эйлера идет обычай обозначать символ буквой (начальной буквой французского слова imaginaire – мнимый, воображаемый):

(2.3)

Этот символ называют мнимой единицей. Тогда для квадратного корня из произвольного отрицательного вещественного числа получаем обозначение

, (2.4)

называемое «мнимым числом ».

В этом названии отразилось то представление, что корень квадратный из отрицательного числа не является числом в «реальном» смысле, что с символом если и связывается какое-либо понятие о числе, то о числе «не настоящем», «выдуманном», «в действительности не существующем». «Выдумка» в данном случае отстоит гораздо дальше от «реальности», подтверждаемой внешней видимостью, чем выдумка иррациональных чисел.

Каждому иррациональному числу, по крайней мере, соответствует определенная точка на координатной оси, а для мнимого числа не удается найти никакого геометрического истолкования или применения. Длины любых отрезков в чувственно воспринимаемом пространстве выражаются вещественными числами, и нет такого отрезка, для выражения длины которого потребовалось бы мнимое число.

Однако у мнимых чисел есть та важная, общая с иррациональными числами черта, что в некоторых случаях операции над символом iy, который не выражает вещественного числа, приводят все-таки к вещественным числам. Это, прежде всего операция возведения любого мнимого числа в квадрат:

. (2.5)

И более сложные выражения, составленные из мнимых величин, могут сводиться к функциям вещественного аргумента, принимающим вещественное значение. Например, если с учетом (2.5) сложить два бесконечных степенных ряда

,


то получится ряд, состоящий только из вещественных членов, сходящийся к функции 2 cos у:

По мере того как углублялось исследование мнимых чисел и функций от мнимого аргумента, раскрывалась их важная роль в решении коренных теоретических проблем математики, а также прикладных задач. Все настоятельнее пробивало себе дорогу убеждение в противоестественности отношения к мнимому числу как к не реальному, «потустороннему» математическому объекту.

Даже в простейших задачах можно усмотреть признаки того, что мнимое число в органическом единстве с числом вещественным представляет некий аспект более глубокого и совершенного понятия числа.

Рассмотрим проблему существования решений некоторых квадратных уравнений. Если в уравнении

(2.6)

дискриминант отрицателен, то в множестве вещественных чисел R не найдется корней этого уравнения. В общем случае их нет и среди мнимых чисел, а лишь специфическое сочетание вещественных и мнимых чисел позволяет дать выражение корню. Например, применяя формулу решения квадратных уравнений

(2.7)

к уравнению

(2.8)


получим

(2.1.9)

К-во Просмотров: 213
Бесплатно скачать Дипломная работа: Геометрии Галилея и Минковского как описания пространства-времени