Дипломная работа: Глобальный круговорот углерода и климат
СаА12 SiO2 О8 + 2СО2 + 3Н2 О = Al2 [Si2 O5 ] (OH)4 + Ca(HCO3 )2 .
Однако кроме силикатных пород углекислотному выветриванию подвержены также осадочные карбонатные породы, взаимодействие которых с атмосферным СО2 идет по реакции
СаСО3 + СО2 + Н2 O= Са (НСO3 )2 .
Связывание атмосферного СО2 при выветривании происходит опосредованно через цикл продукции и деструкции органического вещества почв. В этом отношении почвенный покров является своеобразным химическим реактором, где идут процессы выветривания.
Преобладающая часть атомов углерода земной коры сосредоточена в известняках и доломитах (минеральный, или неорганический углерод). Отношение захороненного углерода (103 ГтС) в продуктах фотосинтеза к углероду в карбонатных породах (107 ГтС) составляет 1:4 [20]. Время, в течение которого происходило накопление углерода в литосфере, очень велико и сравнимо с временем существования биосферы.
Особое место в современных биогеохимических циклах углерода занимают сжигание горючих ископаемых (угля, нефти, газа и др.), обжиг известняка, лесные пожары, вырубка лесов, распашка земель и т.п., связанные с деятельностью человека. В результате в атмосферу возвращается около 1,5 млрд. т углерода, т.е. примерно столько же, сколько его ежегодно связывается в ходе выветривания (образование СаСО3 и других минералов). Биогеохимические круговороты углерода протекают в пространстве и времени. По длительности (периодичности) и пространственному развитию можно выделить относительно короткие (часы – тысячи лет) биогеохимические круговороты (малый и ландшафтный биогеохимические циклы углерода) и биогеохимический цикл, соизмеримый с геологической историей (большой биогеохимический цикл углерода). В пространственном отношении первые протекают в широком спектре экосистем (ландшафтов) разных уровней, второй – охватывает всю биосферу. Малый и ландшафтный биогеохимические круговороты (циклы) углерода развиваются на фоне большого биогеохимического круговорота (цикла) и являются его составной частью.
В биогеохимических круговоротах углерода особо важная роль принадлежит почве, поскольку она служит важнейшим накопителем органического вещества, представленного органическими остатками и гумусом, которые служат одновременно и аккумулятором, и донором СО2 . Педосфера, являясь одной из главных фаз биосферного круговорота, выполняет в отношении углерода следующие функции: резервуара для стока и трансформации атмосферного углерода, ассимилированного при фотосинтезе наземной растительностью; генератора и аккумулятора устойчивых соединений углерода в форме гумуса и карбонатов; генератора и источника подвижных соединений и бикарбонатов в виде углеродосодержащих газов (прежде всего СО2 ) и водорастворимых органических соединений и бикарбонатов.
Педогенный углерод, включаясь в воздушные и водные миграционные потоки, связывает биоту, атмосферу, гидросферу, литосферу в единый биосферный биогеохимический круговорот веществ.
Ландшафтный биогеохимический круговорот углерода – миграция, распределение, рассеяние и концентрация углерода, осуществляющиеся на литологически однородном участке земной поверхности (части географической оболочки Земли) от элювиальных ландшафтов к супераквальным и субаквальным (аквальным), представляющем сложную биокосную систему, в которой почва, кора выветривания, континентальные отложения, грунтовые и поверхностные воды, растительность, животный мир, приземный слой атмосферы тесно между собой связаны миграцией атомов углерода. Между компонентами ландшафта существуют радиальные, или вертикальные (между атмосферой, растительным и животным миром, почвами, горными породами, подземными и поверхностными водами), и латеральные, или горизонтальные (между соседними геосистемами разных рангов), миграции углерода.
Природный ландшафтный биогеохимический круговорот углерода складывается из его абиогенной (физико-химической, механической) и биогенной (фотосинтез, разложение органического вещества и т.д.) миграции. На данном типе круговорота акцентируется внимание при решении локальных и региональных задач, связанных с циклами и балансом углерода, при изучении элювиальных (автономных), трансэлювиальных (транзитных), супераквальных и субаквальных элементарных геохимически сопряженных ландшафтов. Вертикальная мощность ландшафта измеряется слоем, в котором наиболее активно взаимодействуют все отдельные среды.
Малый биогеохимический круговорот углерода – динамическая геохимическая система превращения живого вещества, в которой происходит беспрерывный круговорот углерода при участии растений, животных и микроорганизмов. В круговороте участвуют почва (педосфера), растительность и атмосфера, которые объединены механизмом прямой и обратной связи (почва ↔ растительность ↔ атмосфера).
Главные компоненты, обеспечивающие малый биогеохимический круговорот углерода (как и ландшафтный круговорот): продуценты (все зеленые растения, производящие органическое вещество из неорганических составляющих), консументы (все группы животных, паразитарные формы грибов, растения-паразиты) и редуценты (в первую очередь бактерии и грибы, превращающие органические остатки в неорганические вещества). Малый биогеохимический круговорот углерода проявляется в относительно коротком цикле (часы – сотни лет) и связан со сложным взаимодействием химических, биохимических и биологических процессов, которые контролируются сложным комплексом природно-экологических (биотой, климатом и т.д.) и антропогенных факторов. Малый биогеохимический круговорот углерода развивается на фоне биосферного биогеохимического круговорота и в экосистемах (биогеоценозах) протекает совместно с ландшафтным круговоротом, хотя и в разных формах, и с разной интенсивностью. Малый и ландшафтный биогеохимические круговороты углерода являются наземными круговоротами, так как они охватывают экосистемы суши.
Биосферный биогеохимический круговорот углерода – непрекращающийся процесс миграции, распределения, рассеяния и концентрации углерода в системе "верхние слои литосферы – океан – нижняя часть атмосферы", соизмеримый с геологической историей земной коры. Данный круговорот определяется как биологическими, так и геологическими процессами (тектонические поднятия, седиментогенез, вулканическая деятельность и др.), в своей совокупности осуществляющими обмен углерода между сушей, океаном и атмосферой. Круговорот углерода в биосфере состоит из двух разных циклов: наземного и морского, связанных через границу между океаном и атмосферой [20]. Круговорот, идущий в океане, в основном автономен. Диоксид углерода, растворенный в морской воде, усваивается фитопланктоном, а кислород уходит в раствор. Зоопланктон и рыбы потребляют углерод, фиксированный фитопланктоном, а кислород используют при дыхании. В результате разложения органических веществ в воду возвращается СО2 , усвоенный фитопланктоном. Ежегодное сжигание примерно 5 млрд. т горючих ископаемых должно увеличить атмосферный запас СО2 на 0,7 %, т.е. к 320 млн.–1 (современное содержание СО2 ) ежегодно должно прибавляться почти на 2 млн.–4 . На деле же за год концентрация СО2 в воздухе быстро уходит из атмосферы или в океан, или в наземную флору. Биосферный круговорот углерода состоит из двух разных циклов – наземного и морского (океанического).
Распределение СО2 между органическим веществом почвы, растительностью, атмосферой и океаном играет важную роль в формировании теплового баланса планеты, который зависит как от природных (фотосинтез растений, дыхание корней, животных и микроорганизмов, обменная диффузия на поверхности океана, метаморфизация органических материалов, поступление СО2 из глубин земной коры), так и от антропогенно-техногенных (обработка земли, выжигание растительности, сгорание топлива) процессов. Деятельность человека приводит к дополнительному накоплению углерода в атмосфере, которое катализирует парниковый эффект, что может привести к планетарному потеплению климата.
Годовой уровень обмена углерода между поверхностью Земли и атмосферой составляет 225 ГтС/год, что примерно в 30 раз превышает количество СО2 , связанного с антропогенными выбросами. Около 80 % (или 60 % СО2 суши) пула углерода сосредоточено в северной циркумполярной области (тундра, тайга, леса, луга), тропических и субтропических лесах. В бореальных лесах, 2/3 которых сосредоточены в России, содержится более 40 % СО2 суши. Три четверти запасов углерода циркумполярного Севера сосредоточены в лесных регионах, составляющих более 1500 млн. га суши (10 % поверхности Земли). Основная часть этого пула находится в виде отмершего органического вещества в поверхностном слое торфяных и лесных почв. По отношению к массе углерода коэффициенты фоссилизации органического углерода составляют: в глубоководных частях океана – 0,06 %, на шельфе – около 1%, в озерах на континентах (в виде сапропеля) – 3,5%, в болотах – 8,6 %. Содержание органического углерода в детрите и гумусе педосферы достигает 2104* 1012 кгС, что в 2,9 раза превышает его массу в атмосфере (728 *1012 кгС) и в 3,8 раза выше, чем в биомассе наземной растительности (560* 1012 кгС). Океан поглощает более 4 ГтС/год, из них более 2 ГтС/год приходится на долю биоты океана.
углерод круговорот климат парниковый
Выводы по II главе
Углерод участвует в глобальном круговороте. Живые организмы в той или иной мере фиксируют его, и он на миллионы лет оседает в земной коре в связанном состоянии в виде горных пород, ископаемых топлив - каменного угля, нефти, органических газов. Постоянно действующий конвейер вещества планеты увлекает углерод на различные глубины, где он в результате метаморфоза принимает самые разнообразные формы и в итоге рассеивается по всей земной коре.
Указанные типы биогеохимических круговоротов углерода во многом принципиально сходны. Они связаны между собой механизмами переноса углерода в пределах биосферы, которые совершаются с использованием солнечной энергии и энергии химических реакций. Различия заключаются в основном в масштабах, темпах и сроках завершения цикла. Биосферный биогеохимический круговорот протекает несопоставимо медленнее, чем ландшафтный и малый круговороты. Два последних направлены главным образом на аккумуляцию и удержание углерода в экосистемах (биогеоценозах). Любое нарушение почвенного покрова приводит к потере органического углерода, что порождает глубокие изменения в сложившихся биогеохимических потоках углерода в геосферах.
Потери органического углерода вызваны обработкой земли, лесными пожарами, рубками леса, гибелью лесов в результате болезней и инвазии насекомых, а также промышленными загрязнениями. По масштабам воздействия на углеродный бюджет лесных экосистем Европейской России основная роль принадлежит рубкам, а в Азиатской России – лесным пожарам, вредным насекомым и болезням. Размеры пулов СО