Дипломная работа: Использование баз данных математических задач в процессе подготовки учащихся 11-х классов к ЕГЭ по математике

В основу исследования положена гипотеза : использование в процессе преподавания информационных технологий, в том числе баз данных, помогает повысить эффективность подготовки учащихся к сдаче ЕГЭ.

Цель и гипотеза определили следующие задачи исследования .

1. Исследовать теоретические аспекты работы с готовой базой данных и создания собственной базы данных математических задач (на примере системы управления базами данных MS Access).

2. Определить структуру и содержание методических задач, ориентированных на использование базы данных математических задач на уроках для подготовки учащихся к ЕГЭ.

3. Разработать методику использования базы данных математических задач в процессе подготовки к сдаче ЕГЭ.

4. Экспериментально проверить результативность разработанной методики.

При написании работы были использованы следующие методы исследования : анализ методической и учебной литературы по теме исследования, создание базы данных математических задач «Задания для подготовки к единому государственному экзамену» для учащихся 11-х классов, статистическая обработка экспериментальных данных.

Научная новизна исследования заключается в том, что подготовка к ЕГЭ происходит на принципиально новой основе: использовании базы данных математических задач. Теоретическая значимость исследования заключается в обосновании подхода к созданию и использованию базы данных математических задач на уроках и внеклассных занятиях. Практическая значимость исследования заключается в том, что данный подход позволил разработать методику использования базы данных математических задач при подготовке к ЕГЭ, которые могут быть использованы учителем математики.

Достоверность и обоснованность проведенного исследования обеспечиваются внутренней согласованностью теоретических положений и методических рекомендаций, а также подтверждением на практике.

Апробация результатов исследования осуществлялась при содействии учителя математики Л. И. Костоломовой путем использования их в опыте работы в 11-в классе школы №21 г. Кирова.

Глава 1 . Структура и содержание базы данных математических задач для подготовки к ЕГЭ

1.1 Содержание базы данных математических задач

Эксперимент по введению единого государственного экзамена (ЕГЭ) по математике проводится уже седьмой год; с каждым годом к нему подключаются всё новые и новые регионы страны. Эксперимент, по мнению специалистов, дает объективную информацию о реальном уровне подготовки выпускников, которая представляет интерес и для широкой общественности, и для разработчиков стандартов математического образования и других документов, направленных на модернизацию математического образования [7].

Как известно, главной особенностью ЕГЭ по математике и его отличием от выпускного школьного и вступительного в вуз экзаменов остается его двойная цель: оценить математическую подготовку каждого школьника по курсу алгебры и начал анализа Х-ХI классов и отобрать наиболее подготовленных учащихся для того, чтобы вузы могли в соответствии со своими требованиями зачислить абитуриентов по результатам единого экзамена. При этом все выпускники имеют равные возможности, так как экзамен проводится по единым текстам, по единой технологии, а проверка и оценивание работ осуществляются по единым критериям [16].

В соответствии с этой двоякой целью единого экзамена выстраиваются подходы к отбору контролируемого содержания и к определению структуры экзаменационной работы.

Так как одной из целей ЕГЭ является аттестация школьников по курсу алгебры и начал анализа Х-ХI классов, и программы вступительных экзаменов в вузы содержат обширный материал по этому курсу, то значительную часть экзаменационной работы составляют задания разного уровня сложности, проверяющие уровень усвоения материала курса алгебры и начал анализа. Остальные 4 задания проверяют усвоение стереометрии и материала основной школы, традиционно проверяемых на вступительных экзаменах в вузах (проценты и пропорции, арифметическая и геометрическая прогрессии, планиметрия). Результаты выполнения этих «абитуриентских» заданий не учитываются при выставлении аттестационной оценки [8].

Неизменным осталось и разделение работы на три части по уровню сложности включаемых в них заданий. Первая часть содержит задачи обязательного уровня сложности, вторая – задачи более сложные, требующие применения знаний и умений в несколько измененной ситуации, а третья часть работы включает самые трудные задачи, посильные наиболее подготовленным учащимся. Так же, как и в предыдущие годы, используются задания трех типов: задания с выбором ответа, задания с кратким ответом (ответом является целое число или число, записанное в виде десятичной дроби) и задания с развернутым ответом. При этом технология объективного и единообразного контроля больших массивов учащихся предполагает использование заданий с выбором ответа и кратким ответом, проверка которых позволяет применять автоматизированные способы контроля. Однако традиции российской школы и цели современного образования, указанные в программных документах последних лет, предполагают формирование умений проводить дедуктивные рассуждения при решении задач. Поэтому определенную часть заданий КИМов составляют задачи с развернутым ответом [21].

Охарактеризуем особенности каждого из этих типов заданий и покажем, на что надо обратить внимание при их выполнении [12].

Задания с выбором ответа

Задания с выбором ответа составляют половину заданий работы. К каждому из них приложены четыре варианта ответа, из которых только один верный. При выполнении большинства таких заданий вряд ли удастся угадать верный ответ, не решая задания. Для экономии времени специалисты советуют делать только такие записи, которые необходимы для получения ответа, так как решение этих заданий приводить не требуется. Полученный ответ надо сравнить с ответами, предложенными к заданию, и в соответствующем месте «Бланка ответов №1» отметить номер выбранного ответа.

При этом следует иметь в виду, если даже полученный ответ совпал с одним из предложенных к заданию, то это не обязательно означает, что задание решено верно. Возможно, что выбран ответ, в котором учтена именно та ошибка, которая была допущена при решении. Тем не менее, не целесообразно решать это задание еще раз, лучше, в целях экономии времени, перейти к следующему. Если останется время, то обязательно надо проверить решения всех выполненных заданий.

Если полученный ответ не совпал ни с одним из предложенных к заданию, то это означает, что он неверный.

Задания с выбором ответа помещены в начале Части 1. Они составлены с учетом обязательных требований к математической подготовке выпускникам средней школы. Эти задания типичны для той или иной темы программы по математике, методы их решения известны, а сами решения отрабатывались в процессе обучения. За верное выполнение этих заданий выставляется 1 балл.

Задания с кратким ответом

Задания с кратким ответом, включенные в работу, различаются по уровню сложности. В Часть 1 включены три задания обязательного уровня, в Часть 2 – 8 заданий повышенного уровня. Ответом на эти задания является либо целое число, либо число, записанное в виде десятичной дроби. При их выполнении надо уделить основное внимание проведению правильных преобразований и вычислений, т. е. тем действиям, которые приводят к получению верного числового ответа. Для экономии времени можно не обращать внимание на полноту и аккуратность записи необходимых выкладок или рассуждений, проводить в «уме» промежуточные преобразования, так как приводить запись решения не требуется.

В большинстве заданий с кратким ответом Части 1 обязательного уровня сложности по материалу курса алгебры и начал анализа предлагается найти значение выражения либо решить уравнение показательное или другого вида.

Задания с кратким ответом Части 2 повышенного уровня сложности разнообразны по тематике, восемь из них – по материалу курса алгебры и начал анализа, два задания – по курсу планиметрии и стереометрии и одна текстовая задача по курсу алгебры основной школы. Уровень этих заданий явно выше, чем в Части 1.

За верное выполнение заданий с кратким ответом любого уровня сложности выставляется 1 балл.

Задания с развернутым ответом

Задания с развернутым ответом, включенные в работу, различаются по уровню сложности. В Часть 2 включены два задания повышенного уровня сложности. В Часть 3 включены три задания высокого уровня сложности, которые доступны только тем, кто имеет высокую математическую подготовку и может творчески применять свои знания. Эти задания очень сложные, они доступны далеко не каждому не только хорошо подготовленному школьнику, но и отличнику. В тоже время задания повышенного уровня с развернутым ответом, включенные в Часть 2, доступны хорошо подготовленным на школьном уровне «хорошистам» и отличникам.

В задачах повышенного уровня с развернутым ответом проверяется владение известными алгоритмами действий и методами решений, которые нужно выбрать и применить в нестандартной ситуации, например, при рассмотрении различных случаев, следующих из условия задачи (в условии переменная содержится под знаком модуля), или потребуется переформулировать условие задачи, чтобы выбрать соответствующий способ ее решения (например, перевести условие с «графического языка» на аналитический язык, когда нахождение нулей функции «заменяется» решением уравнения). При их решении не потребуется выполнять многошаговые преобразования и вычисления, а также применять какой-либо особый, необычный рациональный прием решения. При записи решения этих задач не потребуется давать обоснования шагов решения. Так как правильный выбор и применение соответствующих правил, формул и алгоритмов действий или правильная переформулировка условия задачи будут свидетельствовать об усвоении поверяемого материала и знании границ его применения.

Критерии оценки выполнения этих заданий не требуют приведения обоснований выполненных шагов решения, а учитывают только правильность: выбранных приемов или методов решения, формул, правил и свойств математических объектов, выполнения преобразований и вычислений. Выполнение этих заданий оценивается экспертами и в зависимости от правильности приведенного решения за него выставляется от 0 до 2 баллов максимально.

Задания высокого уровня сложности с развернутым ответом , помещенные в Части 3, предлагаются не только для того, чтобы проверить умение учащихся отвечать на поставленный вопрос, но и умение обосновать свои действия, выводы, построить логически верную цепочку рассуждений и выкладок и математически грамотно записать решение.

При выполнении этих заданий надо обратить внимание на то, чтобы сделанные выкладки были последовательны и логичны, переходы к следующему шагу решения были обоснованы (выводы подкреплены ссылками на изученные свойства и признаки математических объектов, на изученные формулы), математические термины и символы использованы корректно.

К-во Просмотров: 241
Бесплатно скачать Дипломная работа: Использование баз данных математических задач в процессе подготовки учащихся 11-х классов к ЕГЭ по математике