Дипломная работа: Использование ЭВМ в кардиологии
В настоящее время развитие компьютерной индустрии затронуло разработки и исследования практически во всех отраслях современной науки. Компьютеры из года в год становятся неотъемлемой частью и обыденной жизни населения. Постепенное наращивание качества, надежности и производимости компьютерного оборудования заставляет разработчиков электронных приборов все чаще и чаще использовать в своих нововведениях микропроцессоры ведущих фирм производителей. Естественно такая ситуация не могла не затронуть медицинскую промышленность. Во всех областях медицины исследования на высоком научном уровне немыслимы без применения современных средств программного обеспечения. Сейчас ЭВМ применяют практически на всех этапах медицинского обследования: в профилактике, диагностике и терапии заболеваний.
Основной задачей современной медицины является предупреждение заболеваний на ранних стадиях развития. Для этого разрабатывается различная диагностическая аппаратура, которая по сути своей является информационно-измерительной системой.
Заболевания сердца – одна из наиболее важных проблем медицины сегодняшнего дня. Современные исследования сердца не могут обойтись без компьютерной техники. Выделяют две основные области исследований, в которых используются компьютеры: моделирование сердца человека и обработка данных кардиологических исследований.
Первая – моделирование сердца человека – осуществляется с целью более глубокого проникновения в сущность функционирования и строения этого органа. Очевидно, что в отсутствие компьютерного обеспечения проблема моделирования едва ли может быть решена.
Вторая область – анализ данных кардиологических исследований. Цель таких работ – постановка диагноза, составление прогноза и лечение. В некоторых случаях обработка кардиологических параметров возможна и вручную, тем не менее, автоматический расчет их с помощью компьютера дает большие преимущества и требует меньше усилий. Наиболее важные преимущества автоматической обработки данных состоят в следующем:
- обработка данных осуществляется по одной схеме,
- результаты представляются в стандартном виде,
- можно использовать стандартную терминологию.
Некоторые же показатели просто не могут быть получены путем ручной обработки, и в этих случаях преимущества компьютера совершенно очевидны.
Различные типы данных, получаемые наиболее распространенными современными диагностическими методами в кардиологии представлены на рисунке 1. При обработке таких данных компьютеры выполняют следующие задачи: ввод данных, хранение, поиск, переработка и выдача информации. Переработка информации в свою очередь подразделяется на следующие подзадачи: фильтрация, распознавание образов, измерение параметров и интерпретация данных.
Рис. 1. Категории объективных кардиологических данных.
Актуальная проблема сегодняшнего дня – надежность и доступностькардиографических аппаратов. Со временем микроконтроллеры ведущих фирм производителей стали дешевле и соответственно более доступны для внедрения в портативные аппараты диагностики сердца. Здесь все большая и большая нагрузка ложится на программное обеспечение, постепенно вытесняя из приборов ранее аппаратно реализуемые функции.
Подбор методов фильтрации и тестирование программных фильтров, разработанные в рамках данного дипломного проекта, удобно проводить отдельно, используя вспомогательные программы разработанные на персональной ЭВМ.
Наиболее распространенным и в полной мере функциональным языком программирования на сегодняшний момент является язык С++, объединяющий в себе возможности стандартизированного языка С и объектно-ориентированного подхода.
В последнее время широкое распространение получила объектно-ориентированная модель разработки программного обеспечения. Основная идея программирования при таком подходе состоит в разработке классов приложения для определения новых типов, манипулировать которыми так же просто, как и встроенными. Создавая новые типы для описания предметной области, С++ помогает программисту писать более легкие для понимания приложения. Классы позволяют отделить детали, касающиеся реализации нового типа, от определения интерфейса и операций, предоставляемых пользователю. При этом уделяется меньшее внимание мелочам, делающим программирование таким утомительным занятием. Значимые для прикладной программы типы можно реализовывать один раз, после чего использовать повторно [9]. Средства, обеспечивающие инкапсуляцию данных и функций, необходимых для реализации типа, помогают значительно упростить последующее сопровождение и развитие прикладной программы. Существует механизм, именуемый наследованием, который вводит возможность включать во вновь разрабатываемый класс общие свойства присущие ранее разработанному классу предку. Например, в трехмерной компьютерной графике классы OrthographicCamera (ортогональная камера) и PerspectiveCamera(перспективная камера) обычно являются производными от базового Camera. Каждый производный от него класс лишь реализует отличия от общей камеры, предоставляя альтернативный код для унаследования функций членов либо вводя альтернативные члены.
Таким образом, используя программные модули, разработанные ранее и обладающие нужным набором функций разработчик может добиться максимальной эффективности работы своих модулей в совокупности с ранее разработанными, как правило поставляемыми вместе с интегрированной средой разработки.
Самой распространенной и наиболее емкой средой разработки сегодня является MicrosoftVisualC++. В наши дни VisualC++ лидирует среди продуктов для программирования в среде Windows. VisualC++ - это инструмент для программирования в среде Widnows, обладающий поистине фантастическими возможностями. Более того, многие разработчики считают VisualC++ самой мощной из всех программ такого класса. На самом деле VisualC++ представляет собой целый набор из множества инструментов, собранных в одном динамическом пакете, готовом к немедленной работе. Сначала программы для Windows приходилось писать на языке С, а не на С++, и получались они большими и сложными. Даже вывод на экран пустого окна требовал примерно пяти страниц сложного невразумительного кода. Язык С++ позволяет хранить большую часть программного кода внутри самостоятельных объектов, а это сокращает объем больших программ. Помимо этого, фирма Microsoft разработала библиотеку MicrosoftFoundationClasses. MFC – замечательный пакет, состоящий из заранее написанного и готового к работе кода. Например, вместо того чтобы самостоятельно писать программу для работы с новым окном, можно просто воспользоваться классом cWnd из MFC, который выполнит всю работу за вас [2]. Возможности, предоставляемые библиотекой классов MFC позволяют конструировать элементы пользовательского интерфейса, легко работать со стандартными типами данных языка С, разрабатывать классы, производные от библиотечных с добавлением новых функциональных возможностей, разрабатывать собственные классы с последующим развитием их функциональности.
Глава 1. Тенденции развития компьютерных систем сбора и математической обработки ЭКГ
Электрокардиологический метод – метод регистрации и анализа биоэлектрических процессов человека и животных нашел весьма широкое применение в клинической практике, физиологическом эксперименте, авиационной и космической медицине, исследованиях по физиологии труда и спорта. Столь широкое применение электрокардиологического метода объясняется тем, что он позволяет получить ценную информацию о деятельностей тканей, органов и систем. Электрическое возбуждение распространяется в определенном направлении и последовательности, создавая на поверхности тела электрическое поле. Поскольку электропроводные свойства тканей неоднородны, электрическое поле ассиметрично с разностью потенциалов между отдельными участками тела. Это свойство положено в основу метода электрокардиографии, который регистрирует разность потенциалов путем различных отведений от поверхности тела, что достигается с помощью приборов – электрокардиографов [1].Процесс получения из ЭКГ диагностической информации называется ЭКГ – анализом. Первые попытки автоматизировать этот процесс были предприняты еще в 70-х годах. Ожидалось, что кроме тех преимуществ, которые дает автоматизация, удастся также повысить диагностическую точность анализа благодаря применению статических методов, которые не могут быть использованы при обработке вручную [3]. Результатом развития различных компьютерных систем явился ЭКГ – анализ. Обычно он выполняется в четыре этапа:
1. Ввод ЭКГ.
2. Фильтрация ЭКГ.
3. Распознавание характерных элементов ЭКГ и измерение соответствующих параметров.
4. Интерпретация и классификация ЭКГ.
Информационно-измерительной системой (ИИС) будем называть совокупность функционально связанных устройств и программного обеспечения, реализующую необходимое информационное обслуживание объекта анализа, которое включает в себя сбор, обработку, передачу и хранение полезной информации.
Запись и ввод ЭКГ.
ЭКГ записывают с помощью прибора, называемого электрокардиографом. До начала 70-х годов ЭКГ отведения записывались последовательно одно за другим [1]. Лишь позже появились трехканальные электрокардиографы, позволяющие вести запись сразу трех отведений. Современная регистрирующая аппаратура может одновременно фиксировать до 12 отведений. От электрокардиографа сигнал передается в АЦП. Здесь аналоговый сигнал ЭКГ преобразуется в цифровую форму и передается в компьютер. Используются различные частоты дискретизации, но чаще всего 250 и 500 Гц. Эти две величины, согласно теореме Шеннона, достаточно высоки, поскольку в ЭКГ взрослого человека максимальная частота, имеющая диагностическое значение, составляет примерно 80 ГЦ. Каждая ЭКГ – кривая после оцифровки передается в компьютер в виде последовательности чисел {Yi}, где Yi – амплитуда (в мкВ) i - ой точки.В современной клинической практике принята следующая система отведений, считающаяся стандартной. В этой системе съем потенциалов осуществляется с правой руки (R), левой руки (L), левой ноги(F) и шести точек от правого края грудины до левой среднеподмышечной линии (C1-C6). На основе снятых потенциалов вычисляются отведения:
Основные:
I = L – R
--> ЧИТАТЬ ПОЛНОСТЬЮ <--