Дипломная работа: Использование ЭВМ в кардиологии
III = F – L
Усиленные:
aVR = R – (L + F)/2
aVL = L – (R + F)/2
aVF = L – (R + L)/2
Грудные с V1 по V6:
Vi =Ci – (R + L + F)/3
При реализации такой схемы приходится задействовать дополнительный электрод на правую ногу (N), обеспечивающий нулевой потенциал, относительно которого и осуществляется съем потенциалов с основных электродов. При реализации такой схемы отведений достаточно часто используется тот факт, что из приведенных 12 отведений только 8 являются линейно – независимыми друг от друга [3]. Это позволяет исключить из схемы аппарата 4 независимых аналоговых тракта, что несколько сокращает его стоимость. Исключаемые отведения вычисляются программным методом следующим образом:
III = II – I
aVR = -(II+I)/2
aVL = (2I – II)/2
aVF = (2II-I)/2
После снятия аналогового сигнала с отведений он соответственно оцифровывается для последующей передачи обработчику, в качестве которого сейчас обычно выступает компьютер [4]. Частота дискретизации Fs на основании теоремы Котельникова – Шеннона должна быть более чем в два раза верхней полосы пропускания. С теоретической точки зрения теорема Шеннона определяет минимальное значение частоты дискретизации Fs для сигнала с ограниченной полосой частот (т. е. для сигнала содержащего частоты вплоть до максимальной Fb). Из теоремы следует что при дискретизации, как минимум вдвое большей, чем частота сигнала, гарантируется частотное содержимое аналогового сигнала и обеспечивается идеальное восстановление оригинального сигнала по его дискретным значениям, с помощью надлежащей интерполяции [5].
Сейчас достаточно часто применяют частоту оцифровки в 500 Гц, рекомендованную Американской Ассоциацией Электрокардиологов [6,7]. Эта величина, согласно теореме Шеннона, достаточно высока, поскольку в ЭКГ взрослого человека максимальная частота, имеющая диагностическое значение, составляет примерно 80 Гц. Однако не следует думать, что частоты дискретизации в современных кардиографах ограничиваются 500 Гц – на данный момент они достигают нескольких килогерц. В соответствии с современными требованиями разрешение по амплитуде у современных приборов должно составлять не менее 5 мкВ. Высокое амплитудное разрешение необходимо для некоторых видов обработки кардиокривых, например для анализа поздних потенциалов, а так же для высококачественного представления электрокардиограммы на экране или в твердой копии без применения специальной интерполяции.
Необходимый диапазон частот для электрокардиографа, применяемого для диагностики должен составлять, как минимум от 0.05 и до 120 Гц (по уровню – 3dB). Причем, если к верхнему диапазону частот нет четко обоснованных требований – в разных источниках называются значения от 100 до 250 Гц, то со значением нижней частоты пропускания связываются диагностически значимые ЭКГ критерии. Если значение нижней полосы пропускания не выдерживается, то возможны ошибки автоматизированной диагностики, вплоть до постановки ошибочного заключения [8].
К сожалению кардиографы, созданные по стандартной схеме обладают рядом недостатков, к которым стоит отнести наличие прецизионных резисторов во входном каскаде схемы отведений, сложных инструментальных входных усилителей, крупногабаритных конденсаторов. Совсем недавно стала доступна элементная база, реализующая принцип сигма – дельта цифрового преобразования в одном модуле. Это позволило реализовать электрокардиограф исключительно на сигма – дельта АЦП [10,11], лишенного упомянутых недостатков. К сожалению, такие аппараты до сих пор обладают достаточно высокой стоимостью.
Фильтрация ЭКГ.
Под задачей обработки понимается решение задачи обнаружения и задачи выделения полезной информации. В общем случае поступающий сигнал, помимо полезной составляющей, содержит и некоторую помеху, которая мешает правильно выделить информационную компоненту сигнала. В этом случае решается задача обработки состоит в том, чтобы наиболее полно исключить помеху, при этом внеся предсказуемые и методологически корректируемые изменения в полезный сигнал. Цифровая фильтрация и быстрое преобразование Фурье - наиболее широко применяемые способы обработки сигнала.
Первостепенное значение на стадии диагностики в кардиологии имеет фильтрация сигналов ритмов сердца. Для постановки правильного диагноза врачу необходимо получать данные от кардиографа, связанные только с активностью сердечных ритмов. После регистрации и дискретизации сигнала ЭКГ следующим этапом обработки ЭКГ обычно является цифровая фильтрация. Это необходимо для повышения качества записи и подавления различных шумов, связанных в основном с мышечным тремором, смещением электродов и электрическими помехами. Цифровые фильтры, применяемые в электрокардиографии можно разделить на 3 основные группы – это нерекурсивные фильтры с конечной импульсной характеристикой(КИХ), рекурсивные фильтры с бесконечной импульсной характеристикой (БИХ), адаптивные фильтры, а также частотные фильтры, производящие фильтрацию сигнала в определенной области частот с использованием локального преобразования Фурье [12]. Для борьбы с мышечной наводкой желателен атреморный фильтр низкой частоты (ФНЧ), ограничивающий диапазон входного сигнала где – то до 60-70 Гц, а для борьбы с сетевой наводкой режекторный фильтр на 50 Гц в условиях отечественных стандартов и на 60 Гц в условиях иностранных сетей. В итоге ПО обработки ЭКГ имеет, как минимум, переключаемый фильтр верхних частот (ФВЧ) с наибольшей постоянной по времени не менее 3.2 секунды, фильтр сетевой наводки и совмещенный с ним или реализованный отдельно переключаемый ФНЧ.
На рисунках 1.1 и 1.2 приведены блок – схемы КИХ и БИХ фильтров соответственно. Элементы Z -1 – просто элемент задержки, который может рассматриваться как регистр, хранящий один отсчет входного сигнала, треугольники – элементы, выполняющие арифметическую операцию умножения, а окружности – сложение.
Рисунок 1.1. Структура КИХ фильтра
Рисунок 1.2. Структура БИХ фильтра.
Традиционная фильтрация обычно применяется тогда, когда полезный сигнал и шум находятся в разных диапазонах частот, причем спектральный характер шума заранее известен. Фильтры обычно проектируются исходя из желаемой АЧХ, которая достигается лишь с требуемой точностью, накладывая определенные ограничения на возможную амплитуду осцилляции в полосе пропускания, ширину переходной области между полосой пропускания и подавления. Для обработки биологических сигналов большую важность имеет линейная, а если это возможно, то и нулевая ФЧХ. Если фильтр имеет нелинейную ФЧХ, то его работа будет вносить нелинейные искажения в сигнал, которые могут сказаться при последующем анализе сигнала. Требование линейности ФЧХ для КИХ фильтров выливается в требование симметрии коэффициентов фильтра относительно середины. Существует достаточно большое количество методик расчета как КИХ, так и БИХ фильтров [5]. Расчетная среда Matlab предоставляет широкий спектр возможностей для расчета фильтров. Расчеты фильтров для применения в детекторе подачи импульса дефибриляции будут приведены в приложении.
Когда не доступна информация о частотном составе шума, или шум имеет известный, но переменный состав, применяется адаптивная фильтрация (рис 1.3).
Рис 1.3. Блок-схема адаптивного фильтра
Записанный сигнал d(t) представляет из себя сумму «чистого» не зашумленного сигнала s(t) и шума n(t). u(t) - сигнал, так или иначе связанный с входным шумом. Адаптивный фильтр вычленяет из входного сигнала составляющие, кореллирующие с шумом и автоматически корректирует свои параметры, исходя из входного сигнала. Выход адаптивного фильтра y(t) - это оценка составляющей сигнала, кореллирующей с шумом. Таким образом, ошибка e(t) = s1= d(t) - y(t) - это оценка составляющей сигнала, несвязанной с шумом. Следовательно, главной задачей адаптивного фильтра является минимизация E[(n(t)-y(t))2]. Адаптивные фильтры могут быть классифицированы по следующим параметрам [15]: