Дипломная работа: Исследование методов разнесенного приема в декаметровом канале связи
Пространственный коэффициент корреляции для KB радиолиния довольно точно аппроксимируется зависимостью
где - средние квадрат телесного угла, под которым виден рассеивающий объем.
1.2. Прием с оптимальным линейным сложением
Рассмотрим принципы построения систем с оптимальным линейным сложением, которые являются основой не только при изучении систем разнесенного приема, но и при построении систем с накоплением (сверткой) сложных сигналов в случае, когда замирания достаточно быстрые и элементарные сигналы оказываются слабо коррелированными.
Запишем равенство в виде
(1)
Так как составляющие шума можно полагать случайными некоррелированными величинами, имеющими нулевые средние значения, а среднеквадратичное значение составляющих сигнала
где ; - амплитуда составляющей сигнала в i-й ветви, то отношение средних квадратов сигнала и шума можно записать в виде
(2)
Соотношение (3) можно выразить через величины , характеризующие отношение сигнал/шум в каждой ветви разнесения
(3)
так как
В соответствии с неравенством Буняковского-Шварца числитель дроби (3) можно записать как
(4)
Подставив (4) в (3) и произведя простейшие преобразования, получим
(5)
Этот результат показывает, что максимально возможное значение отношение мощностей сигнала к шуму, получаемое при оптимальном линейном сложении, равняется сумме отношений сигнал/шум по мощности на выходах всех ветвей разнесения.
Пусть теперь
(6)
где - некоторый коэффициент пропорциональности, не зависящий от i ;
Тогда после подстановки (6) в (2) получим
(7)
Из (7) следует, что если брать взвешивающие коэффициенты в соответствии с (6), а именно
(8)
то отношение сигнал/шум может достигнуть максимально возможного значения, равного сумме отношений сигнал/шум в ветвях разнесения.
Следовательно, при оптимальном линейном сложении в любой интервал времени меньший интервала автокорреляции сигнала , взвешивающий коэффициент автоматически должен регулироваться так, чтобы он был прямо пропорционален корню квадратному из среднеквадратического значения сигнала в i-й ветви разнесения и обратно пропорционален среднеквадратическому значению шума в той же ветви. При этом коэффициент пропорциональности выбирается одинаковым для всех ветвей разнесения.
Найдем теперь закон распределения случайной величины , являющейся в соответствии с (7) суммой случайных величин .