Дипломная работа: Исследование влияния линейных дефектов структуры на критическое поведение трехмерной модели Гейзенберга
Традиционно полагалось, что универсальное поведение существует только в равновесии. Однако недавние исследования в критической динамике для многих статических моделей показали, что универсальность также появляется в пределах микроскопического масштаба времени . Исследование метода коротковременной динамики не только показало существование универсального динамического поведения в пределах коротковременного периода, но также дало очень эффективный метод определения критических индексов [7]. Т.о. мы можем оценивать не только динамический критический показатель
, но также и статические критические индексы
и
. Что более важно, результаты находятся в хорошем соответствии с полученными результатами традиционными методами, выполненными в равновесии.
Аналогично измерениям критических индексов определение критических температур также трудно в равновесии из-за критического замедления. Методом коротковременной динамики критическая температура может быть также получена из поведения намагниченности в критической области.
Главным образом из-за большой длины корреляции в равновесном состоянии существует динамическая скейлинговая форма, имеющая силу не только в равновесии, но также в раннем периоде развития критической системы, если система изначально имеет температуру выше критической, а также маленькую намагниченность. Т.о. после микроскопического времени существует скейлинговая форма. В общем случае для
момента намагниченности:
.
Здесь - произвольный фактор,
- время,
- новый независимый критический параметр.
В ранней стадии развития системы длина корреляции мала, и эффекты конечности размеров почти отсутствуют. Выбирая фактор так, чтобы главная зависимость от времени была отменена (т.е.
), в критической точке получим:
,
где - новый динамический индекс, который характеризует универсальность в коротковременной динамике и равен:
.
Отсюда видно, что в течении микроскопического времени , намагниченность подвергается начальному увеличению в критической точке и можно легко получить значения индекса
, основываясь на этой степенной форме.
Аналогично, полагая , в критической точке получим поведение второго момента намагниченности:
.
Для второго момента намагниченности можно ожидать, ввиду того, что длина корреляции мала в области ранней стадии развития системы :
.
Вблизи критической температуры в поведении намагниченности возникает дополнительный множитель - скейлинговая функция , т.е. появляются исправление к простому степенному закону, зависящие от
. Поэтому при моделировании системы при температуре вблизи критической получается поведение
с несовершенным степенным поведением, и критическая температура
может быть получена путем интерполирования.
С другой стороны, можно также рассматривать динамические процессы, с начальным состоянием, в котором все спины направлены вверх. Моделирование методами Монте-Карло этих систем показало, что там также существует подобное скейлинговое выражение:
При критической температуре и при , получаем степенной закон для намагниченности:
Конечномерный скейлинговый анализ показывает, что поведение кумулянта Биндера определяется законом:
.
Т.о., появляется возможность измерять критические индексы и определять критическую точку. Критическое замедление почти отсутствует, так как длина корреляции еще маленькая (в течении времени, когда система еще не достигла равновесия). Метод коротковременной динамики может, кроме того, использоваться, как инструмент для отличия фазовых переходов первого рода от второго, сравнивая критическую температуру, полученную от различных стартовых состояний.
Глава 2. Результаты моделирования критического поведения трехмерной модели Гейзенберга с линейными дефектами
2.1 Алгоритм Вульфа. Определение критической температуры
В первой части данной работы использовался алгоритм моделирования Вольфа, с целью уменьшения влияния эффектов критического замедления времени релаксации системы на результаты моделирования. Алгоритм Вольфа характеризуется тем, что на решетке произвольно выбирается спин, строится "физический" кластер, которому этот спин принадлежит, а затем весь построенный кластер переворачивается.
В самом начале вычислений термодинамических характеристик для каждой примесной конфигурации все спины ориентировались в одном направлении (так называемый "холодный старт" - соответствует состоянию системы при Т = 0). Затем чтобы получить конфигурацию спинов, характерную для данной температуры, переворачивалось некоторое количество кластеров. Этот процесс называется термолизацией. В наших вычислениях термолизация составляла 200 шагов Монте-Карло. При этом Монте-Карло шагу соответствовало 5 переворотов кластера Вольфа.
После этого усреднением по N=2000 шагов Монте-Карло вычислялись кумулянты Биндера Результаты усреднялись по 15 - 20 различным реализациям пространственного распределения линейных дефектов образце (примесным конфигурациям). Концентрация спинов выбиралась равной 0.80.
На рис.1 показана температурная зависимость кумулянтов Биндера для различных L. Для разбавленной системы кумулянты пересеклись в области T = 1.20 - 1.21.
2.2 Метод коротковременной динамики. Уточнение критической температуры. Расчет критических индексов
Во второй части работы был реализован метод коротковременной динамики для уточнения критической температуры и вычисления критических показателей. В начальном состоянии все спины были ориентированы в одном направлении, затем использовался алгоритм Метрополиса для нахождения зависимости намагниченности, её логарифмической производной по температуре и кумулянта Биндера от времени. Все вышеуказанные величины усреднялись по примесным конфигурациям.
При моделировании рассматривалась динамика системы в интервале до 1000 шагов Монте-Карло на спин (МКС), около 80 различных конфигураций примесей, для каждой конфигурации проводилось усреднение по 10 прогонкам. Для модели с дальней пространственной корреляцией дефектов характерна сильные флуктуации результатов при малых размерах решетки (L~ 16 - 32). Поэтому в данной работе была предпринята попытка выполнить моделирование для кубической решетки с линейным размером L=64.