Дипломная работа: Измеритель коэффициента шума
· производит математическую обработку результатов измерений (усредняя их с целью уменьшения флуктуационной погрешности).
Наряду с ИКШ часто применяются анализаторы спектра, измерение коэффициента шума в этом случае осуществляют по методу опорного генератора или по методу двух отсчетов. Вычисление шумовых параметров производится вручную, но некоторые современные анализаторы спектра могут вычислять КШ автоматически модуляционным методом. Наряду с таким достоинством, как многофункциональность, анализаторы обладают несколькими недостатками, такими как:
· низкая чувствительность, для повышения которой необходим малошумящий усилитель;
· погрешность измерения сильно превышает погрешность ИКШ;
· низкая скорость и относительно высокая трудоемкость проведения измерений по сравнению с ИКШ.
В качестве простейшего прибора для измерения шумовых параметров может быть использован ваттметр, как основной прибор измерения уровня сигнала. При этом по методу двух отсчетов рассчитывать коэффициент шума нужно вручную или при наличии соответствующего интерфейса с помощью ЭВМ. Так как измеритель мощности является широкополосным устройством, то в результате расчета будут определены интегральные шумовые параметры. Для определения дифференциальных параметров на выходе измеряемого устройства надо поставить узкополосный фильтр. Такой фильтр обычно является не перестраиваемым, поэтому измерения производятся на фиксированной частоте. Наиболее часто ваттметры используются для измерения коэффициента шума приемников, имеющих фиксированную промежуточную частоту. Низкая чувствительность ваттметров налагает дополнительное требование на измеряемые приемники, которые должны обладать достаточным коэффициентом усиления. Дополнительный малошумящий усилитель, включенный на входе измерителя мощности, повысит чувствительность, но может внести погрешность из-за нестабильности своих параметров.
4.3 Генераторы шума
4.3.1 Общие сведения
В качестве градуированных по температуре шума или спектральной плотности мощности шумов источников сигналов при измерениях шумовых параметров приемно-усилительных устройств, СВЧ интегральных микросхем, транзисторов и пр. используется значительная номенклатура генераторов шума. Физическая природа возникновения флуктуации электрического тока или напряжения весьма разнообразна. Она может заключаться в тепловом движении электронов (тепловой шум), дрейфе носителей тока (дробовой эффект), флуктуациях проводимости (избыточный шум) и др. В качестве первичных источников шума в задающих генераторах используются различные устройства. Классификация шумовых приборов приведена на рисунке 4.3.
Рисунок 4.3 - Классификация шумовых приборов приведена
4.3.2 Газоразрядные генераторы шума
Широкое применение в сантиметровом диапазоне волн в качестве первичного источника шума нашли газоразрядные шумовые трубки с положительным столбом. Газоразрядные шумовые трубки (ГШТ) имеют высокую равномерность спектральной плотности мощности шума в широкой полосе частот, стабильный и относительно высокий уровень мощности, просты в эксплуатации, устойчивы к жестким воздействиям внешней среды и обладают достаточно высокой эксплуатационной надежностью.
Газоразрядные шумовые трубки представляют собой стеклянную трубку, наполненную инертным газом (аргоном или неоном) до давления от сотен до тысяч Паскалей. На одном конце трубки расположен катод, на противоположном - анод. Свойство газоразрядных трубок генерировать шумы обусловлено колебаниями электронов в плазме. Для практического использования шумового излучения положительного столба ГШТ помещают в специальные генераторные секции. В зависимости от диапазона частот и типа трубки могут быть использованы генераторные секции, выполненные на волноводе, коаксиальной или полосковой линии.
Волноводные шумовые генераторы представляют собой отрезок волновода, в центре широкой стенки которого под малым углом (7 - 15°) помещается ГШТ. Наклонное положение трубки в волноводе обеспечивает при разряде равномерное внесение потерь на достаточной длине линии, благодаря чему достигается удовлетворительное согласование ГШТ с линией передачи в широком диапазоне частот. Полосковые генераторы шума представляют собой симметричную полосковую линию вдоль оси которой помещается газоразрядная шумовая трубка.
Основными параметрами, характеризующими шумовые газоразрядные генераторы, являются:
· рабочий диапазон частот;
· температура шума (относительная температура шума) или спектральная плотность мощности шума;
· КСВН шумового генератора в рабочем режиме («горячий» прибор) и в выключенном состоянии («холодный» прибор);
· потери, вносимые в тракт генератором шума в выключенном состоянии;
· анодный ток ГШТ;
· погрешность градуировки СПМШ генератора шума.
Интенсивность излучения ГШТ определяется главным образом электронной температурой плазмы . При помещении ГШТ в волноводную или коаксиальную генераторную секцию интенсивность шумового излучения генератора шума становится меньше на значение потерь в генераторной секции. Потери, вносимые генератором шума в тракт, в основном определяются потерями в стенке трубки, линии передачи и в присоединительных элементах.
Между температурой шума генератора, электронной температурой плазмы, потерями, вносимыми в тракт включенным и выключенным генераторами, имеется связь, которая может быть выражена следующим соотношением:
(4.9)
Как видно из (4.9), температура шума генератора и ее стабильность во многом определяются превышением потерь, вносимых в тракт в рабочем режиме, над потерями в выключенном состоянии. Поэтому при разработке генераторов шума или выборе прибора для измерения всегда стремятся к получению большого значения и малых .
Частотная зависимость затухания, вносимого плазмой в СВЧ линию передачи, и потерь в генераторной секции, не оказывает значительного влияния на частотную характеристику СПМШ генераторов. Больший вклад вносит зависимость анодных колебаний в ГШТ от частоты. Соответствующим выбором анодного тока трубки можно достигнуть значительного снижения этой составляющей частотной зависимости СПМШ генераторов.
Генераторы шума на ГШТ обладают довольно высокой временной стабильностью. Значения шумовой температуры отдельных ГШТ отличаются друг от друга только в пределах случайной погрешности измерений. Газоразрядные шумовые трубки не имеют заметного старения от наработки. В связи с этим специально отобранные ГШТ используются в качестве меры СПМШ в эталонах и образцовой аппаратуре различных разрядов. Погрешности градуировки генераторов шума определяются в основном точностью измерительной аппаратуры.
4.3.3 Тепловые генераторы шума