Дипломная работа: Комп’ютеризована вимірювальна система параметрів електричних машин з газомагнітним підвісом
Додаток Б (обов’язковий) Фрагмент програми вимірювання та контролю моменту інерції
Додаток В (обов’язковий) Комп’ютеризована вимірювальна система параметрів електричних машин з газомагнітним підвісом
Перелік елементів
Анотація
У дипломному проекті розроблено комп’ютерний пристрій для контролю моменту інерціі ротора синхронної гістерезисної електричної машини з газомагнітним підвісом ротора. Розроблено високоточний первинний перетворювач амплітуди крутильних коливань та вимірювальний канал на основі аналого-цифрового перетворювача, дані з виходу якого передаються через порт до ПЕОМ, де обчислюється значення моменту інерції та здійснюється його контроль. Розраховано похибку вимірювання моменту інерції та показники достовірності його контролю.
Також у дипломному проекті проведено розрахунок економічного ефекту від впровадження пристрою у виробництво та розглянуто питання охорони праці та екології.
Annotation
In the degree project the computer device for monitoring a moment of inertia of a curl of the synchronous hysteresis electrical machine of the machine gas-magnetic hanger of a curl is developed. The precision primary converter of amplitude of torsional oscillations and measuring channel is developed on the basis of an analog-to-digital converter, the datas from which exit are transmited through a port to the computer, where the value of a moment of inertia is evaluated and its monitoring is carried out. The measuring error of a moment of inertia and indexes of reliability of its monitoring is calculated.
Also in the degree project the account of economic benefit from introduction of the device in manufacture is carried out and are considered of a question of protection of work and ecology.
Вступ
Момент інерції ротора будь-якої електричної машини є однією з найважливіших її характеристик. На жаль, вимірювання та контроль цього параметру електричних машин трудомісткий і в умовах промислового виробництва а також в процесі періодичного контролю стану електричних машин не завжди виконується.
Промисловістю не випускаються засоби автоматизованого контролю та вимірювання моменту інерції. Це приводить до відносно високого проценту браку при виробництві машин.
В теперішній час бажано мати пристрій, здатний здійснювати контроль та вимірювання моменту інерції без знімання електричної машини з місця її роботи.
Величина моменту інерції ротора електричних машин суттєво впливає на виміряне значення динамічного моменту , оскільки останній є невід’ємною складовою частиною під час встановлення залежності і в процесі отримання динамічної механічної характеристики .
Розрахункові методи визначення характеризуються досить низькою точністю, тому на практиці застосовуються рідко. Найбільш розповсюдженими є експериментальні методи : допоміжного маятника; крутильних коливань; самогальмування.
Суттєвим недоліком перших двох експериментальних методів є невисока точність та складність автоматизації процесу вимірювання.
Окрім того, їх не можна застосовувати при вимірюванні моменту інерції ротора електричних машин з безконтактним підвісом ротора, тому як у таких машинах використовується примусове гальмування ротору в процесі зупинки машини.
Високоточний контроль та вимірювання кутової швидкості має велике значення не тільки при випробуваннях електричних машин (ЕМ), а в багатьох випадках і під час їх роботи. Це стосується систем точних приводів, систем автоматики, у яких ЕМ є складовими компонентами, систем, у яких відбувається керування електроприводами.
Специфічною особливістю тахометрії є вимога високої точності вимірювання: в більшості випадків вимірювання швидкостей повинні виконуватись з точністю на один-два порядку вище, ніж вимірювання інших параметрів руху. В останній час ця вимога накладається ще на динамічний режим роботи тахометра, обумовлюючи ще одну вимогу - високу швидкодію.
Дуже важливим елементом вимірювального кола кутової швидкості є тахометричний перетворювач. В сучасних вимірюваннях, в основному використовуються два види тахометричних перетворювачів - частотні та амплітудні, інформативними параметрами вихідного сигналу яких є, відповідно, частота (період) та амплітуда.
Нині найточнішими вважаються дискретні методи вимірювання кутової швидкості. Вони ґрунтуються на квантуванні сигналів за рівнем та дискретизації у часі [1].
Для більшості електродвигунів, які працюють у різноманітних пристроях автоматики, системах точних електроприводів, різноманітних побутових пристроях, динамічний режим є основним режимом їх роботи. Велике значення, особливо для апаратури відео та звукозапису, систем автоматики, має високоточне вимірювання відхилень кутової швидкості електродвигуна від номінального значення.
Широке застосування математичних моделей електродвигунів обумовлює необхідність перевірки їх адекватності. Це краще за все робити шляхом порівняння розрахункової динамічної характеристики з експериментальною.
В останній час з’явилось багато наукових праць, що присвячені ідентифікації параметрів електродвигунів за їх математичними моделями, що дозволяє значно скоротити час їх випробувань. Використовуємі при цьому алгоритми обумовлюють необхідність високоточного вимірювання динамічних характеристик електромеханічних перетворювачів енергії (ЕМПЕ).
Незважаючи на те, що відома велика кількість різноманітних тахометрів, тахометричних перетворювачів, багато з яких може бути застосовано для високоточного контролю середнього значення кутової швидкості, вітчизняна промисловість таких пристроїв не випускає. Це обумовлює необхідність розробки високоточного пристрою для вимірювання та контролю середнього значення кутової швидкості.
1 Огляд аналогів розробляємої комп’ютеризованої вимірювальної системи параметрів електричних машин з газомагнітним підвісом
Вирішення проблеми підвищення продуктивності механізмів та машин, що нерозривно пов’язане з проблемою підвищення швидкості робочих органів механізмів, провідні фірми світу знаходять у використанні безконтактного підвісу роторних систем. Відомі три типи безконтактних підвісів роторних систем - газовий, магнітний, газомагнітний. Порівняльна характеристика трьох типів безконтактних підвісів дозволяє оцінити їх переваги та недоліки, перспективність подальшого розвитку, вибрати об’єкт контролю.
Широко розповсюдженим типом безконтактного підвісу роторних систем є газовий підвіс. Однією з найважливіших характеристик безконтактного підвісу є момент тертя та потужність витрат на тертя. Витрати на тертя у газових підшипниках виникають за рахунок в’язкого тертя усередині шару газоподібного мастильного матеріалу. Момент тертя концентричного радіального газового підшипника визначається виразом [1]
, (1.1)
де - динамічна в’язкість газоподібного мастильного матеріалу,
R - радіус підшипника,