Дипломная работа: Комп’ютеризована вимірювальна система параметрів електричних машин з газомагнітним підвісом

- інформативні параметри змінюються у широкому діапазоні;

- виникає необхідність сумісних вимірювань часу та кутової швидкості;

- необхідність вияву короткочасних змін - «голкових провалів моменту», які

суттєво погіршують якість механічної енергії, сприяють виникненню ударів в

механічній трансмісії, що має зазори, з якою з’єднана ЕМ;

- відсутність методик розрахунку динамічних метрологічних характеристик;

Рівняння обертання валу ЕМ описується наступним рівнянням [4]:

, (1.5)

де М0 - момент опору на валу,

М - обертаючий (електромагнітний) момент.

Динамічний момент ЕМ визначається лівою частиною рівняння (1.5) та дорівнює різниці між обертаючим моментом та моментом на валу, визначає кутове прискорення ротору та зв’язаних з ним мас.

. (1.6)

Момент опору обумовлений наявністю зовнішніх мас, що зв’язані з валом ЕМ. Він може існувати у перехідних та усталеному режимах роботи та бути відсутнім при випробуваннях ЕМ, може змінюватись у часі та залежати від кутової швидкості, але він характеризує зовнішні маси, а не саму ЕМ. При відсутності моменту опору на валу динамічний момент дорівнює обертаючому.

Аналіз виразу (1.5) свідчить про необхідність проведення вимірювання та контролю кутової швидкості в динамічному режимі та контролю моменту інерції для контролю та визначення параметрів руху.

Момент інерції ротору є однією з найважливіших характеристик ЕМ, яка визначає її динамічні властивості. Однак у довідковій літературі та технічних умовах на ЕМ він вказується не завжди. У відповідності з [5] момент інерції ротору може мати великі відхилення від номінального значення (10 % ). При проектуванні різноманітних електроприводів та систем автоматики розробників цікавлять точні значення моменту інерції роторів ЕМ (а деколи і роторів у зборі з виконавчими пристроями), оскільки вони визначають тепловий режим та швидкохідність ЕМ. Внаслідок неоднорідності матеріалу та складних геометричних форм ротору розрахункове визначення моменту інерції є трудомістким завданням зі складною методикою та великою похибкою. Більш точним є експериментальне визначення моменту інерції. Питанням експериментального визначення моменту інерції присвячено багато наукових робіт [6, 7], але високоточного, простого, швидкодіючого пристрою його контролю досі нема. Найбільш розповсюджені в теперішній час методи визначення моменту інерції [6], це метод допоміжного маятнику, який використовується для ЕМ потужністю від 10 до 1000 кВт, метод самогальмування, який використовується для ЕМ потужністю вище 100 кВт, метод крутильних коливань. Останній є найбільш універсальним та придатний для контролю моменту інерції ЕМ як великої потужності, так і мікродвигунів. Згідно цієї методики, частина ЕМ, що обертається, підвішується у вертикальному положенні осі обертання та приводиться у крутильний коливальний рух. При цьому визначається період малих крутильних коливань, який потім порівнюється з періодом коливань еталонного тіла з відомим моментом інерції. Шуканий момент інерції визначається з виразу:

, (1.7)

де - момент інерції еталонного тіла,

- період коливань еталонного тіла,

- період коливань частини ЕМ, що обертається.

Незважаючи на універсальність, цей метод має такі суттєві недоліки, як необхідність розбирання ЕМ та велику трудомісткість, що значно обмежує його використання. За допомогою цього методу неможливий контроль моменту інерції ЕМ в процесі їх роботи та без їх демонтування.

Нині відомі наукові розробки, що присвячені визначенню параметрів та характеристик ЕМ з аналізу динамічних режимів їх роботи [6, 7]. У роботах [8, 9], розроблено спосіб визначення моменту інерції та моменту опору на валу за допомогою двох зразкових мас з відомими моментами інерції на основі використання інформації про зміну кутової швидкості. Він полягає у вимірюванні кутового прискорення у режимах пуску та самогальмування асинхронної трифазної ЕМ при встановлених на валу зразкових масах. На основі отриманих результатів вирішується система рівнянь, з якої знаходяться шукані величини. Цей метод має високу точність, та у порівнянні з іншими методами, високу швидкодію, але він не придатний для контролю моменту інерції ЕМ з газомагнітним підвісом ротору, тому як для більшості таких машин режим самогальмування відсутній, а зупинення здійснюється примусово, шляхом подання постійної напруги замість змінної напруги живлення, що створює гальмівний момент.

Для контролю моменту інерції таких ЕМ перспективним є спосіб, заснований на визначенні амплітуди крутильних коливань ротору під час їх роботи в усталеному режимі. Але він потребує подальшої розробки для визначення аналітичних співвідношень, що зв’язують контролюємий параметр з вихідними параметрами ЕМ, інформацію про які можна отримати шляхом прямих вимірювань.

Механічна характеристика (МХ) є однією з найважливіших та найбільш інформативних характеристик ЕМ та визначається як залежність між обертаючим моментом та кутовою швидкістю обертання:

М=f(), (1.8)

або

=f(М), (1.9)

що отримана при незмінних напрузі живлення та частоті мережі.

Вигляд МХ обумовлюється різноманітними початковими умовами та іншими параметрами. З великою кількості таких МХ виділяють пускову МХ, яка називається ще природною та вимірюється при підключені ЕМ до мережі живлення з номінальними параметрами при відсутності на валу моменту опору та додаткових моментів інерції. За МХ при відповідних умовах розраховуються статичні параметри ЕМ. Наприклад, для трифазної асинхронної ЕМ, МХ режиму реверсу при наявності належного додаткового моменту інерції, наближується до МХ статичного режиму, що дає можливість зменшити час вимірювань таких статичних параметрів, як початковий пусковий момент, максимальний момент та інші. Окрім цього за МХ характеристикою можливо оцінити деякі види браку. Наприклад, при асиметрії обмотки ротору асинхронного двигуна, форма МХ характеристики суттєво відрізняється від зразкової. При невірному з’єднанні секцій обмотки статору час розбігу затягнений у порівнянні із зразковим.

З вищесказаного слідує, що підвищення точності визначення не тільки механічної характеристики, а і багатьох інших параметрів ЕМ вимагає наявності високоточних пристроїв вимірювання та контролю кутової швидкості у статичному та динамічному режимах роботи об’єкту контролю, та точних автоматичних і швидкодіючих пристроїв контролю моменту інерції роторної системи для будь-якої ЕМ. Це обумовлює доцільність їх подальшої розробки та дослідження.


К-во Просмотров: 211
Бесплатно скачать Дипломная работа: Комп’ютеризована вимірювальна система параметрів електричних машин з газомагнітним підвісом