Дипломная работа: Конструирование биосенсора для регистрации P. aeruginosa АТСС 27853
Фермент состоит из одной или больше пептидных цепей, которые образуют третичную структуру, стабилизированную электростатическими взаимодействиями, водородной связью и дисульфидными мостиками. Его каталитическая активность связана с активным центром, где идет реакция. Она специфическая в силу уникальной пространственной конфигурации и заряда этого центра. Ферменты реагируют с субстратом по следующей схеме:
E + S ES
P + E, (1)
где: Е - фермент, S - субстрат фермента и Р - продукт ферментативной реакции. Кинетика этого процесса детально проанализирована Михаелисом - Ментеи [6]. Скорость образования или исчезновения продукта описывается следующим уравнением:
–(dS/dP) = (dP/dt) = (ks [E][S])/([(k2 + k3 )/k1 ] + [S]) = (Vmax [S])/(Km + [S]), (2)
где: Vmax – максимальная скорость ферментативной реакции, Km – константа Михаелиса. При инверсии уравнения (2) оно позволяет получить зависимость Ханеса:
(1/V) = (Km /Vmax [S]) + (1/Vmax ). (3)
Эти уравнения позволяют определить концентрацию количества субстрата, или количества фермента, которые участвуют в каталитической реакции.
В ферментативных амперометрических биосенсорах обычно измеряется скорость поглощения кислорода или разряда ферментативной реакции, которая нарабатывается в ходе реакций:
лецитин + Н2 Про холин + фосфористая кислота, (4)
холин + ПРО2 + 2Н2 Про бетаин + 2Н2 ПРО2 , (5)
где: ChOx -фермент холиноксидаза.
Иммобилизация ферментов необходима для того, чтобы увеличить стабильность измерений, сделать более эффективную связь ферментативной реакции с преобразователем, локализировать реакцию в одном сенсоре, сделать возможными непрерывные измерения и доступным их математический анализ.
Иммобилизацию ферментов проводят ионообменом или ковалентным связыванием, поперечной сшивкой (сетка) или удерживанием в ловушках (молекулярные решетки, микроинкапсуляция). Ковалентное связывание наиболее эффективно из всех методов сохранения активности и увеличения долговечности ферментов. Достаточно важным является и связывание фермента с мембраной через соответствующие функциональные группировки. Локализация ферментативной реакции - также один из наиболее важных моментов в технологии создания сенсоров. Появилась возможность локализовать ферментативную реакцию там, где это наиболее выгодно: на мембране или непосредственно на электроде, где прямая реакция протекает без диффузионных ограничений. Возможность непрерывных измерений обеспечивается отсутствием необходимости замены фермента, в котором можно регенерировать после окончании реакции. Содержание ферментов в гелях достаточно детально описано для ферментов, встроенных в агарозу. Ферменты специфическим образом познают субстрат, косубстрат, кофактор, активатор и ингибитор. Ферменты способны осуществлять множество превращений с одинаковой эффективностью. Действие ферментов может приводить к мощному увеличению сигнала, который регистрируется. Ферменты могут быть иммобилизированы.
К резистометрическим сенсорам относят биосенсоры, в которых информационный сигнал пропорционален активной составляющей электрохимического импеданса Z на высокой частоте f. При высоких f комплексная диаграмма Арганда вырождается в точку на действительной оси импеданса ReZ и практически равняется сопротивлению раствора Rр . На рисунке 3 приведена схема тонкопленочного резистометрического биосенсора, использованного в работе [7], для определения глюкозы и мочевины путем измерения проводимости G в крови при частоте переменного тока f = 10 кГц.
Рисунок 3. Схема измерения проводимости тонкопленочного биосенсора, где I - рабочий электрод, II - электрод сравнения.
В ходе эксперимента авторы измеряли зависимость амплитуды исходного сигнала от концентрации субстрата. Для создания биоматрицы готовили растворы фермента и БСА в 20 мм калий-фосфатном буфере с рH=7,4 с конечными концентрациями 50-100 мг/моль и смешивали в соотношении 1:1, соответственно. Каплю смеси "фермент + БСА" наносили на поверхность одной пары электродов. На поверхность второй пары наносили раствор чистого БСА (электрод сравнения). Для полимеризации электроды окунали в атмосферу насыщенных паров глутарового альдегида на 30 мин., потом подсушивали мембраны на воздухе. Сигнал от электрода с мембраной БСА, которая расположена на том же кристалле, вычитался из сигнала на электроде с ферментативной мембраной. Разработанный биосенсор позволил определить глюкозу и мочевину в крови.
Во многих случаях для выявления биологической (в первую очередь, ферментативной) активности бактерий можно использовать амперометрические системы проточного инжекционного анализа и миниатюрные электрохимические детекторы. В этих случаях необходимо использование перистальтического насоса. Повышение скорости омывающего рабочий электрод анализируемого потока раствора приводит к увеличению регистрируемого сигнала [8].
1.2 Биосенсоры - принципы конструирования
биосенсор селективность биоэлектрохимический раствор
При конструировании тонкослойных биосенсоров стоит учитывать четыре основных фактора: 1) химическую и физическую природу ионселективной пленки; 2) характеристики оптических материалов; 3) особенности конструирования электрохимической ячейки; 4) тип аппаратуры, которая регистрирует.
Ионселективная тонкая пленка должна обеспечивать предыдущее концентрирование анализируемого вещества, подавление препятствий со стороны сопутствующих веществ, быть оптически прозрачной на измерительной длине волны света и электрохимически неактивной в определенном диапазоне потенциалов. При этом она не должна вступать в химическое взаимодействие с подкладкой из ITO, должна быть тонкой и однородной. Две из наиболее часто используемых подкладок представляют собой оксид кремния (SiО2), который готовится по методу "золь-гель", и поливиниловий спирт. Используют также нафионные пленки или ядерные лавсановые фильтры без добавок [9]. В них вводят иономеры, которые создают ионообменные кластеры. В качестве иономеров используют полати(диметил диалиламмониевый хлорид) - ДД, полати(винилбензил триметиламмоный хлорид) - ВТХ, четвертичный полати(4-винилпиридин) 4В и полиакриловую кислоту - ПК. Оптимальная толщина пленки, которую наносят, 400 - 700 нм. Ранее (рис. 3.) представлена схема, которую рационально использовать при конструировании такого биосенсора. В литературе описаны сенсоры для определении аммиака и хлора с калиевым ионообменным стеклом ВК7, используемым в качестве оптически прозрачного плоского волновода. Возможности биосенсорной характеристики биологических, физико-химических, биохимических, биоматематических и фармако-клинических реакций поистине не ограниченные.
1.3 Применение биосенсоров
Наряду с созданием новых поколений биосенсоров для определения токсичных газов [10], полиэлектролита [11], разрабатываются полимерные платформы для энзимов, ДНК электродов [12]. В последнее десятилетие получили развитие работы, направленные на создание микробных биосенсоров с иммобилизированными бактериями [6]. Разрабатываются зонды для идентификации нуклеиновых кислот и других макромолекул (рис. 4) [6, 13].
Рисунок 4. Золотой многоэлектродный сенсор для определения множественного взаимодействия антиген-антитело.
Электрохимическую импедансную спектроскопию (ЭИС) в соединении с золотыми рабочими массивами (рис. 4) использовали для определения множественных взаимодействий антиген-антитело. Характеристики биосенсора определялись поверхностью антигена гепатита В (HbsАg). Участок биосенсора был подготовлен в результате иммобилизации антител на покрытую молекулами поверхность электродов. Были получены линейные зависимости сопротивления переноса электронов и концентрации HbsАg в диапазоне от 10 пкг•моль–1 до 1 нг•моль-1 с границей выявление 10 пкг• моль-1 . Последующее развитие получили работы по созданию глюконометров [13]. Для анализа соединения крови непосредственно в артериях и венах уже используется новое поколение иглообразных электродов из легированных сталей и индивидуальных индифферентных металлов (Au, Pt, Ti, Mo) специальной конструкции [14]. Одним из перспективных направлений развития биосенсорных технологий есть использование в них высокопроводящих полимерных пленок, которые удерживают комплексы с переносом заряда на основе солей TCNQ [15].
РАЗДЕЛ 2. Материалы и методы
2.1 Автоматический вычислительно-измерительный компьютеризированный комплекс для исследования биоэлектрохимических межфазных границ
Для проведения эксперимента биоэлектрохимии необходимы как медленная регистрация вольтамперных и хроноамперных зависимостей, с чем, естественно, справляется потенциостат ПИ 50.1.1 укомплектованный потенциометрами марок ЛКД или ППД, которые пишут, так и их быстрая регистрация. Однако, поскольку механизм записи циклической вольтамперной зависимости (ЦВАЗ) потенциометрами марок ЛКД или ППД является механическим, то скорость быстродействия их небольшая и, естественно, они не могут перекрыть весь рабочий диапазон работы потенциостата ПИ 50.1.1, управляемого от внешнего генератора П – 8. При необходимости регистрации ЦВАЗ со скоростями развертки потенциала, которые превышают 0.1 В/c, с достаточно высокой точностью, эти измерения оказываются искаженными и их недопустимо использовать для анализа экспериментальных результатов. В данной работе нами предложен подход, который дает возможность превратить потенциостат ПИ 50.1.1 с программатором ПР–8 в высокоэффективный автоматический вычислительно-измерительный компьютеризированный комплекс (рис. 5) для исследования электрохимических и биоэлектрохимических межфазных границ и регистрации ЦВАЗ. С этой целью мы использовали осциллограф RigolDC 1022, который обладает необходимыми характеристиками. На вход Y мы вводим токовый сигнал j, на вход X сигнал напряжения U. В зависимости от целей эксперимента сигнал синхронизации может быть задан от любого из 8 шагов программатора. Запись экспериментальных данных осуществляется в файл. Записываются триады–время t, ток j и поляризация Е.
Рисунок 5. Автоматический вычислительно-измерительный компьютеризированный комплекс для исследования электрохимических и биоэлектрохимических межфазных границ.
На примере измерений циклических вольтамперных зависимостей для разных межфазных границ, в широком диапазоне потенциалов поляризации и скоростей развертки по потенциалу, проверена работоспособность предложенной установки. Использование осциллографа RigolDC 1022 позволило (рис. 5) перекрыть весь рабочий диапазон параметров потенциостата ПИ 50.1.1.