Дипломная работа: Математическое моделирование пластической деформации кристаллов
Если есть периодичность (см. рис. 2) и по второму направлению, то должно выполняться аналогичное требование и для второго направления. При этом необходимо заметить, что ориентация второй стороны для прямоугольной ячейки моделирования уже задана, поскольку она перпендикулярна первой стороне. Поэтому её длина будет кратна некоторой величине.
Если не принять специальных мер при подготовке начального состояния системы, то в ней возникают коллективные движения - колебания. Это связано с тем, что система может оказаться в сжатом или растянутом состоянии из-за несоответствия температуры системы с постоянной кристаллической решетки. Другими словами это тепловое расширение (сжатие) системы. Такие колебания имеют большой период и слабо затухают. Накладываясь на исследуемый процесс (например, деформирование системы) они смазывают картину этого исследуемого процесса. Следовательно, от этих колебаний необходимо избавиться. Это можно сделать несколькими способами. Во-первых, подождать пока колебания затухнут. Однако из-за большого периода и малого затухания это требует большого времени. Во-вторых, попытаться подогнать постоянную решетки кристалла к температуре. Опыт показывает, что, сделав несколько попыток, можно полностью исключить колебания. В-третьих, такую подгонку можно выполнить автоматически. О том, как это можно сделать, будет сказано ниже.
В МД моделировании часто возникает необходимость иметь систему в состоянии, характеризуемом определенной температурой. Однако, как мы можем получить систему с заданной температурой? Другими словами, как мы можем контролировать систему?
Для изменения температуры необходимо так изменить скорости частиц, чтобы получить желаемую температуру. В алгоритме Верле со скоростью, обсуждаемом выше, это может быть выполнено заменой уравнения
(9) |
на уравнение
, | (10) |
где желаемая температура, и текущая температура. Такая модификация означает, что мы больше не следуем уравнениям Ньютона и, что полная энергия больше не сохраняется.
1.8. Начальное состояние для кристаллов с дефектами
С помощью МД можно исследовать деформирование, как совершенных кристаллов, так и кристаллов содержащих дефекты, например, кристаллов подвергнутых облучению. О том, как подготовить начальное состояние для совершенного кристалла, было сказано выше. Подготовка начального состояния для облученного кристалла намного более сложная задача. Однако, если известны доза и спектр первично выбитых атомов, МД позволяет выполнить моделирование каскада повреждений [9,10,11]и таким образом решить эту сложную задачу. При этом описанные выше потенциалы, необходимо дополнить, чтобы учесть отталкивание на малых расстояниях, например, гладко сшивая их с потенциалом Циглера-Бирсака-Литмарка [12]. Такой подход позволяет учесть многие явления, возникающие при облучении, но является достаточно сложным и лежит за рамками данной работы.
Можно также исследовать влияние определенных дефектов, возникающие при облучении ГПУ кристаллов на их пластические свойства. Например, можно исследовать влияние межузельных кластеров и дефектов Френкеля. Очевидно, что начальные состояния, содержащие такие дефекты, легко приготовить, стартуя с начального состояния для идеального кристалла. Для этого необходимо удалить (добавить, переместить) атомы кристалла так, чтобы получилась конфигурация кристалла с требуемыми дефектами. Кристалл при этом получается обычно в напряженном состоянии. Это справедливо особенно при добавлении атомов, так как для добавленных атомов расстояния до ближайших атомов кристалла обычно намного меньше, чем равновесные расстояния между атомами в кристалле. Из-за сильного роста потенциала межатомного взаимодействия на малых расстояниях такие атомы обладают большой потенциальной энергией. Если не принять специальных мер, это может вызвать разлет кристалла. Чтобы не допустить этого и обеспечить релаксацию напряжений можно использовать процедуру минимизации и последующий подогрев системы до нужной температуры.
1.9. Нагрузка
В данной роботе рассматривалось деформирование кристаллов путем одноосного растяжения. Поскольку вдоль направления растяжения наложены периодические граничные условия, то отсутствуют свободные границы, к которым можно было бы приложить нагрузку. Поэтому задается растяжение системы, и потом находится возникшее вследствие этого напряжение. МД и деформирование выполняю