Дипломная работа: Математична модель транспортної системи підприємства
Кожний із цих потоків може бути, у свою чергу, розділений на підгрупи відповідно до роду вантажу, типом транспортних засобів і т.п.
Слід зазначити, що потоки, що існують на транспортній мережі, не є незалежними, а тісно пов'язані між собою. Очевидно, наприклад, що для існування вантажопотоку або пасажиропотоку в якій ланки транспортної мережі необхідно, щоб по ньому протікав також потік транспортних засобів.
РОЗДІЛ 2. Транспортні потоки, планування та оптимізація
2.1 Задачі планування незалежних транспортних потоків
Однієї з поширених практичних задач, що зводяться до оптимізації незалежних транспортних потоків, є пошук максимального транспортного потоку з пункту його зародження в пункт поглинання, наприклад визначення максимального потоку вантажів, що може бути перевезений із пункту відправлення в пункт призначення по транспортній мережі з обмеженою пропускною спроможністю.
Ця задача формулюється в такий спосіб.
Задано транспортну мережу G (V, Е), у якій п = |V| - число вершин, а т =| Е| - число дуг. Кожній дузі (i,j) Е поставлено у відповідність невід’ємне число , називане її пропускною спроможністю і відповідною максимальною кількістю одиниць транспортного потоку, що може пройти по дузі.
Вершина s та V, із якої починається переміщення однорідного потоку, називається джерелом, а вершина t V, у якій воно закінчується, - стоком.
Шляхом із s и t в G (V, Е) називається послідовність вершин і дуг, така, що
s ≡ i1;(i1, i2); i2; (i2i3),…,(in-1 ,in );in ≡t...
Однорідним транспортним потоком у мережі G (V, Е) називається множина чисел xij, таких, що
j ≠ s,t
Кількість потоку, що виходять із джерела або входять у стік,
Під задачею про максимальний потік розуміється задача пошуку в G (V, Е) потоку максимального розміру v, що протікає з s у t.
Існує багато різноманітних алгоритмів пошуку максимального потоку. Найбільше поширені з них перераховані в табл. 1 із указівкою джерела й оцінки числа операцій. Уявлення про тривалість обчислень можна одержати з табл..2 [10]
Таблиця.1-Алгоритми пошуку максимального потоку
Автор алгоритму | Помилка в загальному випадку | m=n | m=n2 | k=m+n |
Форд-Фалкенсон Эдмонс-Карп Диниц Карзанов Черкаський Галил |
[4] [5] [6] [7] [8] [9] |
0(vm) К-во Просмотров: 450
Бесплатно скачать Дипломная работа: Математична модель транспортної системи підприємства
|