Дипломная работа: Методика обучения решению текстовых задач алгебраическим способом

2. Схематическая запись задачи.

лодка 6ч

А В

плот лодка

8 ч

3. Поиск способа решения задачи. Нужно найти время, за которое плот проплывет расстояние между пристанями А и В. Для того чтобы найти это время, надо знать расстояние АВ и скорость течения реки. Оба они известны, поэтому обозначим расстояние АВ буквой (км), а скорость течения реки примем равной км/ч. Чтобы связать эти неизвестные с данными задачи (время движения лодки по и против течения реки), нужно еще знать собственную скорость лодки. Она тоже неизвестна, положим, что она равна км/ч. Отсюда естественно возникает план решения, заключающийся в том, чтобы составить систему уравнений относительно введенных неизвестных.

4. Осуществление решения задачи. Итак, пусть расстояние АВ равно s км, скорость течения реки км/ч, собственная скорость лодки км/ч, а искомое время движения плота на пути в км равно часов.

Тогда скорость лодки по течению реки равна км/ч. За 6 ч лодка, идя с этой скоростью, прошла путь АВ в км. Следовательно.

(1)

Против течения эта лодка идет со скоростью км/ч и путь АВ в км она проходит за 8 ч, поэтому

(2)

Наконец, плот, двигаясь со скоростью км/ч, покрыл расстояние км за ч, следовательно,

(3)

Уравнения (1), (2) и (3) образуют систему уравнений относительно неизвестных и . Так как требуется найти лишь, то остальные неизвестные постараемся исключить.

Для этого из уравнений (1) и (2) найдем

.

Вычитая из первого уравнения второе, получим:

решение задача текстовый алгебраический


, отсюда .

Поставим найденное выражение для в уравнение (3)

.

Так как, очевидно, не равно нулю, то можно обе части полученного уравнения разделить на . Тогда найдем: .

5. Проверка решения. Итак, мы нашли, что плот проплывает расстояние между пристанями за 48 ч. Следовательно, его скорость, равная скорости течения реки, равна км/ч. Скорость же лодки по течению равна км/ч, а против течения км/ч. Для того чтобы убедиться в правильности решения, достаточно проверить, будут ли равны собственные скорости лодки, найденные двумя способами:

1) от скорости лодки по течению отнять скорость течения реки, т.е. ,

2) к скорости лодки против течения реки прибавить скорость течения реки, т.е. .

Произведя вычисления, получаем верное равенство: .

Значит, задача решена правильно.

6. Исследование задачи. В данном случае этот этап решения не нужен.

7. Ответ: плот проплывет расстояние между пристанями за 48 ч.

К-во Просмотров: 525
Бесплатно скачать Дипломная работа: Методика обучения решению текстовых задач алгебраическим способом