Дипломная работа: Методика обучения школьников приемам решения текстовых арифметических задач

3. Изучить методику работы над текстовой задачей.

4. Анализ нетрадиционных подходов в методике работы над текстовой арифметической задачей.

Гипотеза: Я предполагаю, что новые подходы, формы, направления работы над задачей более успешно позволяют организовать процесс решения текстовых задач.

1. ХАРАКТЕРИСТИКА ТЕКСТОВОЙ ЗАДАЧИ И МЕТОДИКА РАБОТЫ С НЕЙ

1.1 Понятие тестовой задачи

В обучении математике велика роль текстовых задач.

Решая задачи, учащиеся приобретают новые математические знания, готовятся к практической деятельности. Задачи способствуют развитию их логического мышления. Большое значение имеет решение задач и в воспитании личности учащихся. Поэтому важно, чтобы учитель имел глубокие представления о текстовой задаче, о её структуре, умел решать такие задачи различными способами.

Текстовая задача – есть описание некоторой ситуации на естественном языке с требованием дать количественную характеристику какого-либо компонента этой ситуации, установить наличие или отсутствие некоторого отношения между её компонентами или определить вид этого отношения.

Решение задач – это работа несколько необычная, а именно умственная работа. А чтобы научиться какой-либо работе, нужно предварительно хорошо изучить тот материал, над которым придётся работать, те инструменты, с помощью которых выполняется эта работа.

Значит, для того чтобы научиться решать задачи, надо разобраться в том, что собой они представляют, как они устроены, из каких составных частей они состоят, каковы инструменты, с помощью которых производится решение задач.

Каждая задача – это единство условия и цели. Если нет одного из этих компонентов, то нет и задачи. Это очень важно иметь в виду, чтобы проводить анализ текста задачи с соблюдением такого единства. Это означает, что анализ условия задачи необходимо соотносить с вопросом задачи и, наоборот, вопрос задачи анализировать направленно с условием. Их нельзя разрывать, так как они составляют одно целое.

Математическая задача – это связанный лаконический рассказ, в котором введены значения некоторых величин и предлагается отыскать другие неизвестные значения величин, зависимые от данных и связанные с ними определенными соотношениями, указанными в условии.

Любая текстовая задача состоит из двух частей: условия и требования (вопроса).

В условии соблюдаются сведения об объектах и некоторых величинах, характеризующих данные объекта, об известных и неизвестных значениях этих величин, об отношениях между ними.

Требования задачи – это указание того, что нужно найти. Оно может быть выражено предложением в повелительной или вопросительной форме («Найти площадь треугольника.» или «Чему равна площадь прямоугольника?»).

Рассмотрим задачу: На тракторе «Кировец» колхозное поле можно вспахать за 10 дней, а на тракторе «Казахстан» – за 15 дней. На вспашку поставлены оба трактора. За сколько дней будет вспахано это поле?

В задаче пять неизвестных значений величин, одно из которых заключено в требовании задачи. Это значение величины называется искомым.

Иногда задачи формируются таким образом, что часть условия или всё условие включено в одно предложение с требованием задачи.

В реальной жизни довольно часто возникают самые разнообразные задачные ситуации. Сформулированные на их основе задачи могут содержать избыточную информацию, то есть, такую, которая не нужна для выполнения требования задачи.

На основе возникающих в жизни задачных ситуаций могут быть сформулированы и задачи, в которых недостаточно информации для выполнения требований. Так в задаче: «Найти длину и ширину участка прямоугольной формы, если известно, что длина больше ширины на 3 метра» – недостаточно данных для ответа на её вопрос. Чтобы выполнить эту задачу, необходимо её дополнить недостающими данными.

Одна и та же задача может рассматриваться как задача с достаточным числом данных в зависимости от имеющихся и решающих значений.

Рассматривая задачу в узком смысле этого понятия, в ней можно выделить следующие составные элементы:

1. Словесное изложение сюжета, в котором явно или в завуалированной форме указана функциональная зависимость между величинами, числовые значения которых входят в задачу.

2. Числовые значения величин или числовые данные, о которых говорится в тексте задачи.

3. Задание, обычно сформулированное в виде вопроса, в котором предлагается узнать неизвестные значения одной или нескольких величин. Эти значения называют искомыми.

Задачи и решение их занимают в обучении школьников весьма существенное место и по времени, и по их влиянию на умственное развитие ребенка.

Понимая роль задачи и её место в обучении и воспитании ученика, учитель должен подходить к подбору задачи и выбору способов решения обоснованно и чётко знать, что должна дать ученику работа при решении данной им задачи.

1.2 Роль задачи в начальном курсе математики

Начальный курс математики раскрывается на системе целесообразно подобранных задач. Значительное место занимают в этой системе текстовые задачи. При рассмотрении смысла арифметических действий, связи существующей между действиями, и взаимосвязи между компонентами и результатами действий непременно используются соответствующие простые текстовые задачи (задачи, решаемые одним арифметическим действием). Текстовые задачи служат также одним из важнейших средств ознакомления детей с математическими отношениями, выражаемыми словами «быть на столько-то больше (меньше)», «быть на столько-то раз больше (меньше)». Они используются и в целях уяснения понятия доли (задачи на нахождение доли величины и искомого значения величины по доле). Текстовые задачи помогают и при формировании ряда геометрических понятий, а также при рассмотрении элементов алгебры.

Если мы хотим сформировать у школьников правильное понятие о сложении, необходимо, чтобы дети решили достаточное количество простых задач на нахождение суммы, практически выполняя каждый раз операцию объединения множеств без общих элементов. Выступая в роли конкретного материала для формирования знаний, задачи дают возможность связать теорию с практикой, обучение с жизнью. Решение задач формирует у детей практические умения, необходимые каждому человеку в повседневной жизни. Например, подсчитать стоимость покупки, вычислить в какое время надо выйти, чтобы не опоздать на поезд и т.п.

Использование задач в качестве конкретной основы для ознакомления с новыми знаниями и для применения уже имеющихся у детей знаний играет исключительно важную роль в формировании у детей элементов материалистического мировоззрения. Решая задачи, ученик убеждается, что многие математические понятия, имеют корни в реальной жизни, в практике людей.

К-во Просмотров: 1028
Бесплатно скачать Дипломная работа: Методика обучения школьников приемам решения текстовых арифметических задач