Дипломная работа: Моделирование парожидкостного равновесия реакционной смеси в процессе получения метилциклопропилкетона

Математическая форма уравнений обеспечивает модели NRTL большую гибкость, способность описывать самые различные типы зависимости коэффициентов активности от состава. Сохраняя основные достоинства уравнений Вильсона, уравнения NRTL способны также описывать системы с расслаиванием, благодаря чему часто используются для расчета равновесий жидкость – жидкость и жидкость – жидкость – пар [7].

Преимущества и недостатки уравнения NRTL [3].

При помощи трехпараметрического уравнения NRTL можно, как правило, достаточно хорошо представит данные о равновесии в бинарных системах. Преимущество этого уравнения по сравнению с уравнениями Маргулеса и Ван-Лаара состоит в том. Что его можно применять к многокомпонентным смесям, основываясь только на бинарных параметрах, а по сравнению с уравнениями Вильсона – в том, что его можно использовать для представления равновесия жидкость-жидкость, хотя уравнение Цубоки-Катаямы-Вильсона также применимо в этих целях. В некоторых случаях какое-либо одно из уравнений дает лучшие результаты при описании равновесия пар-жидкость, но поскольку уравнение NRTL трехпараметрическое, оно обычно предпочтительнее, чем уравнение Вильсона или UNIQUAC.

При выводе уравнения UNIQUAC ,носившим получеткий характер, Абрамс и Праузниц исходили из модели двух жидкостей и концепции локального состава. Используемая ими модель предполагает, что избыточная энергия Гиббса обусловлена, во-первых, различием размеров и форм молекул (конфигурационная или комбинаторная составляющие) и, во-вторых, энергией взаимодействия молекул (вторая составляющая избыточной энергии Гиббса) [3].

gi – параметр площади компонента i; ri – параметр объема компонента i;z – координационное число;- комбинаторная часть коэффициента активности компонента i; - остаточная часть активности компонента i;- доля площади компонента i; - объемная доля компонента i.

По качеству описания равновесий жидкость – пар и жидкость – жидкость модель UNIQUAC в среднем соответствует модели NRTL, но содержит, в расчете на пару компонентов, на один оцениваемый параметр меньше. Последнее важно при расчете параметров для бинарных систем с малой взаимной растворимостью компонентов, когда для обоснованного расчета трех параметров данных недостаточно, а также в любом другом случае очень ограниченной экспериментальной информации о системе. Ценное свойство модели – учет в явной форме комбинаторного вклада в GЕ , что позволяет применить модель к растворам полимеров [7].

Сравнение уравнений.

Уравнение Маргулиса, Ван Лара и связанные с ними алгебраические выражения характеризуются относительной простотой математического аппарата, легкостью оценки параметров по данным о коэффициентах активности и адекватным представлением двухкомпонентных смесей, значительно отклоняющихся от идеальных, включая частично растворимые жидкие системы. Эти уравнения не применимы к многокомпонентным системам, если отсутствуют параметры взаимодействия между тремя и более компонентами.

Уравнение Вильсона позволяет точно представить равновесие пар – жидкость в двух- и многокомпонентных смесях с использованием только параметров бинарного взаимодействия. В силу большей простоты этого уравнения его использование может быть предпочтительным для решения указанной задачи, чем применение уравнений NRTLи UNIQUAC. Уравнение Вильсона нельзя непосредственно применять для представления равновесия жидкость – жидкость; использование в этих целях его столь же простой модификации, уравнения Цубуки – Катаямы – Вильсона, дает удовлетворительные результаты, хотя последнее не было подвергнуто тщательной экспериментальной проверке, как другие уравнения.

При помощи уравнения NRTL можно достаточно верно представить равновесие пар – жидкость и жидкость – жидкость в двух- и многокомпонентных системах, а применительно к водным системам оно часто превосходит другие уравнения. Это уравнение проще по форме, чем уравнение UNIQUAC, однако его недостаток состоит в том, что для каждой пары составляющих необходимы три параметра. Величину третьего параметра часто можно получить исходя из химической природы компонентов.

Уравнение UNIQUAC – наиболее сложное в алгебраическом отношении, хотя в нем используется только по два параметра для каждой пары компонентов. В уравнении учитываются сведения о площадях поверхности и объемах молекул чистых компонентов, которые можно определить по данным о структуре, в силу чего этот метод представляется особенно эффективным применительно к смесям, молекулы которых значительно различаются по размеру. Уравнение UNIQUAC применимо для представления равновесия пар – жидкость и жидкость – жидкость в многокомпонентных смесях при использовании только параметров бинарного взаимодействия и данных о чистых компонентах [3].


Основная часть.

Математическое описание совмещенных реакционно-ректификационных процессов, а также синтез принципиальной технологической схемы получения конечных продуктов предполагает обязательное наличие данных по фазовому равновесию жидкость – пар, в связи, с чем исследование и математическое описание условий парожидкостного равновесия является одной из важнейших задач. Экспериментальное определение равновесия жидкость – пар в многокомпонентных системах весьма трудоемко. Поэтому целесообразно провести исследования в составляющих наименьшей размерности (бинарных, тройных системах) и в случае адекватного описания этих данных фазовые равновесия в системах большей размерности моделируются с незначительной ошибкой, сопоставимой с ошибкой эксперимента.

Моделирование фазового равновесия в реакционной смеси, содержащей АПА, МЦПК и УК, проводилось на основе уравнений «локальных составов», учитывающих связь между избыточной энергией Гиббса и параметрами; характеризующими различие в размерах молекул и в величинах межмолекулярного взаимодействия неидеальных растворов.

Уравнения Вильсона, NRTL и UNIQUAC были использованы для моделирования парожидкостного равновесия в бинарной системе МЦПК-УК, а также АПА-МЦПК, АПА-УК и трехкомпонентной системе АПА-МЦПК-УК. Данная смесь содержит бинарный гомогенный азеотроп с минимумом температуры кипения на стороне МЦПК-УК. Результаты приведены в таблице:

Расчетные данные NRTL UNIQUAC Wilson
DT DY DT DY DT DY
МЦПК-АПА mean 3,49 0,0656 3,67 0,0649 3,56 0,0657
max 6,01 0,1005 6,68 0,1004 5,97 0,1005
B12 = 3,15E+02 Del = -2,53E+02 A12 = 4,93E+02
B21 = 1,38E+02 Del = 1,16E+03 A21 = 4,65E+02
Alpha = 2,72E-01
УК-АПА mean 4,46 0,0373 4,39 0,0391 4,82 0,0377
max 9,34 0,0741 9,58 0,0756 9,45 0,0755
B12 = 9,04E+02 Del = 1,03E+02 A12 = 4,28E+02
B21 = -2,81E+02 Del = 5,74E+02 A21 = 6,81E+02
Alpha = 2,00E-01
МЦПК-УК mean 0,21 0,0079 0,22 0,0091 0,37 0,0105
max 0,67 0,0177 0,62 0,0161 0,59 0,0193
B12 = 7,56E+02 Del = 6,74E+02 A12 = -1,00E+03
B21 = -4,73E+02 Del = -3,85E+02 A21 = 1,52E+03
Alpha = 2,03E-01

На основе полученных данных можно сделать вывод, что для описания парожидкостного равновесия реакционной смеси получения МЦПК наилучшей моделью является NRTL.

К-во Просмотров: 196
Бесплатно скачать Дипломная работа: Моделирование парожидкостного равновесия реакционной смеси в процессе получения метилциклопропилкетона