Дипломная работа: Моделирование парожидкостного равновесия в четырехкомпонентной смеси ацетонтолуолн-бутанолдиметилформамид
Как видно, в первом случае векторы ноды и градиента температур направлены в разные стороны и образуют между собой тупой угол; во втором – векторы ноды и градиента давлений направлены в одну сторону и образуют между собой острый угол, что объясняет знак «–» в уравнении (1.11). После действия оператора G вектор ноды изменяет свое направление и модуль и становится вектором . Вектор градиента после умножения на скалярный множитель изменяет свой модуль и также становится равным по величине вектору .
(а) (б)
Рис. 1.4. Взаимное расположение изотермоизобарического многообразия, векторов ноды жидкость–пар и градиентов температуры (а) и давления (б) в трехкомпонентных системах.
Из сравнения уравнений (1.11) и (1.12) следует частный вывод. Для некоторого вектора состава жидкой фазы отнимем одно уравнение от другого. При определенных и получим следующий результат [8]:
(1.15)
или:
(1.16)
Поскольку и – некоторые скалярные множители, то для закрепленного состава системы градиенты стационарного поля температур кипения при и градиенты стационарного поля давлений при колинеарны. Последнее согласуется с физическим смыслом, так как в этом случае точка состава смеси принадлежит определенному изотермоизобарическому многообразию, которое является многообразием уровня как для температуры, так и для давления. Однако векторы имеют разный знак, и их линейная (в точке) комбинация всегда равна нулю:
(1.17)
Следовательно, эти два вектора всегда лежат на одной прямой, ортогональной многообразию уровня, и имеют противоположное направление.
Подробное исследование уравнений (1.11) и (1.12) было проведено в [8]. Отмечено, что полученные результаты можно использовать для выявления различных корреляций и тонких закономерностей фазового равновесия жидкость–пар в многокомпонентных системах, в частности:
- для определения взаимосвязи топографического представления равновесной температуры кипения смеси и хода -линий, в том числе единичных;
- для определения экстремумов температуры (давления) по направлению;
- для корреляции хода изотермоизобар и коэффициентов распределения компонентов;
- для получения некоторых общих выводов относительно различных термодинамических свойств путём исследования полученных уравнений в избыточных функциях.
Подробное исследование свойств скалярных полей равновесных температур двухфазных трехкомпонентных систем было проведено в [9-11].
1.3 Нелокальные закономерности диаграмм фазового равновесия жидкость–пар
Индексом () особой точки поля нод называют число поворотов вектора на 360° при обходе вокруг этой точки вдоль замкнутой линии, охватывающей эту точку. Если векторы поворачиваются на 360° при обходе особой точки, причем в ту же сторону, в какую совершается обход, то , а если нода поворачивается в противоположную сторону, то . Если при обходе вектор-нода остается неподвижной или совершает равные колебания в стороны, то . Все простые (не особые) точки имеют индекс, равный нулю. Если обойти по замкнутой кривой некоторое многообразие, которое содержит несколько особых точек с разными индексами, то индекс многообразия (), то есть число поворотов вектора-ноды на его границе, вдоль которой осуществляется движение, будет равен сумме индексов особых точек этого многообразия:
(1.18)
Для замкнутых многообразий, например сферы, индекс не зависит от конкретного векторного поля, размещенного на этой сфере, а характеризуется некоторым инвариантом – характеристикой Эйлера, которая в топологии определяется уравнением:
, (1.19)
где – размерность сферы.
Алгебраическая сумма индексов особых точек равна на сфере характеристике Эйлера:
(1.20)
Уравнение (1.20) было принято за основу в исследованиях общих законов построения фазовых диаграмм, характеризуемых разным числом особых точек различного типа. Как видно из этого уравнения, суммарный индекс сферы равен нулю, если m – нечетное число, и равен двум, если m – четное число. Таким образом, зная общий индекс сферы, можно задачу подсчета алгебраической суммы особых точек диаграммы фазового равновесия свести к задаче построения сферы из концентрационных симплексов той же размерности и подсчета повторяющихся при этом особых точек.
Если обозначить: – узлы с положительным индексом, – узлы с отрицательным индексом, – седла с положительным индексом, – седла с отрицательным индексом, то уравнение связи этих особых точек, предложенное Жаровым В.Т., имеет вид:
, (1.21)