Дипломная работа: Моделювання робочого процесу чотирьохтактного дизеля
Для підвищення чистоти масла і збільшення моторних властивостей використовується відцентровий фільтр і диспергатор.
Насос відцентрового фільтру забирає масло з картера маслозбірника і по трубопроводу проводить нагнітання на ЦФ і по трубі на диспергатор. На ЦФ є клапан перепускання, який здійснює перепускання масла в головну систему змащування при підвищенні тиску масла перед ЦФ.
1.1.11 Паливна система
Паливна система забезпечує подачу палива в циліндри дизеля на згорання і його підготовку (фільтрація, підігрів). Паливний бак виконаний у вигляді ємкості, де міститься витратна кількість палива.
Паливо з бака, тепловоза, по трубопроводу через фільтр грубої очистки засмоктується помпою встановленою на дизелі, і нагнітається по трубопроводу через один з витратомірів через фільтр тонкої очистки в трубопровід живлення паливних насосів , виконаний у вигляді колектора, звідки паливо подається до насосів високого тиску котрі дозують паливо відповідно до навантаження і подають його в циліндри на згорання через форсунки.
Надлишок палива по трубопроводу через другий витратомір повертається в бак через клапан перепускної і підігрівач палива. Для підтримки тиску в трубопроводі перепускний клапан відрегульований на відкриття при тиску 13 кгс/см2 .
Чисте паливо, що просочилося з форсунок, відводиться по дренажному трубопроводу в бак.
Передпускове прокачування системи паливом здійснюється автономним паливо підкачуючим агрегатом , який засмоктує паливо з бака через фільтр грубої очистки і нагнітає в трубопровід. Запобіжні клапани перешкоджають зворотному перетіканню палива при роботі помпи або паливо підкачуючого агрегату. Забруднене паливо (85% палива, 15% масла), що просочилося з насосів високого тиску відводиться в дренажний бак
У холодний час паливо підігрівається шляхом подачі гарячої води в підігрівач з системи охолоджування.
Манометри показують тиск до і після фільтру, тонкої очистки палива, тобто після підкачуючої помпи і перед насосами високого тиску.
2. МОДЕЛЮВАННЯ РОБОЧОГО ПРОЦЕСУ ЧОТИРЬОХТАКТНОГО ДИЗЕЛЯ
Рішення задачі вибору конструктивних і регулювальних параметрів двигунів будь-якого призначення за яким-небудь критерієм може здійснюватися двома методами: експериментальним або розрахунковим. Можливо і їхнє сполучення. Експериментальний метод вимагає значних витрат матеріальних, енергетичних і трудових ресурсів на виготовлення натурних зразків двигунів і вузлів до них і проведення їхніх випробувань. Крім того, його реалізація виявляється дуже тривалою, а найкращий результат, може бути і не досягнутий.
Розрахунковий метод представляється кращим особливо на початковій стадії проектування. Він заснований на математичному моделюванні робочого процесу ДВЗ, однак, його реалізація вимагає наявності достовірної та адекватної математичної моделі процесів, які протікають у ДВЗ, а також проведення її адаптації до конкретної задачі оптимізації цих процесів за обраним критерієм.
У проведеному дослідженні, за критерій оптимізації конструктивних і регулювальних параметрів тепловозних ДВЗ обрана питома середньоексплуатаційна витрата ge сер.е [1], а для її визначення необхідно математичне моделювання робочого процесу (циклу) усього розгорнутого ДВЗ.
ge
Де Ne i , ge i ,ф i – відповідно ефективна потужність, питома ефективна витрата палива і відносний час роботи дизеля на i-тій позиції контролера машиніста, r- число позицій контролера, з урахуванням і тепловозного холостого хода, kп =1,05...1,1–коефіцієнт, що враховує перевитрату палива на перехідних процесах.
В даний час відома досить велика кількість математичних моделей робочого процесу (або циклу) ДВЗ. Усі їх можна розділити на газодинамічні й термодинамічні. Перші засновані на застосуванні системи рівнянь збереження маси, імпульсу, енергії й рівняння стану, які записані для кожної розрахункової зони двигуна. В основу других покладено рішення спрощеної системи рівнянь, що включають лише рівняння збереження маси, енергії й рівняння стану.
При безумовних перевагах (можливість простежити зміну параметрів газового потоку не тільки в часі, але і по координатах розрахункової зони) газодинамічні моделі не знайшли широкого поширення. Це викликано тим, що рішення системи нелінійних диференціальних рівнянь у частинних похідних, які покладанні в основу газодинамічних моделей, виявляється громіздким і працеємними, тому що вирішуються за методом кінцевих різниць, застосування якого до нелінійних систем вимагає спеціальних штучних прийомів для збіжності рішення: зміни різницевої схеми, зміни кроку розрахунку за часом і координатою. У результаті при користуванні загальнодоступними ЕОМ час розрахунку навіть одного варіанта виявляється досить тривалим. У нашому випадку кількість досліджуваних варіантів досягає сотень, а в кожнім варіанті розрахунок ведеться для 9...17 режимів.
Багаторічний досвід розрахунків робочого циклу ДВЗ за допомогою термодинамічних моделей показав, що вони добре працюють при відносно низьких швидкостях газових потоків і невеликій довжині розрахункових зон. Контроль довжини розрахункової зони, що забезпечує придатну для практичних цілей точність, варто вести по величині числа Струхаля [2]. У роботах [2,4,5] показано, що задовільна точність розрахунків досягається при
.(2.1)
У даній роботі була використана математична модель робочого циклу, що викладена в роботах [3,4,5]. Вибір цієї моделі порозумівається тим, що вона чуттєва до режиму роботи (n, Nе), зміні регулювальних і конструктивних параметрів двигуна, а також зміні зовнішніх умов (po , to ). Вона відноситься до групи термодинамічних моделей, розрахункові схеми газоповітряного тракту якої побудовані на зонному принципі. Це значить, що весь цей тракт розбивається послідовно на ряд розрахункових зон, що представляють собою для реального двигуна елементи відповідного призначення: повітряний фільтр, трубопровід від фільтра до нагнітача, нагнітач, охолоджувач наддувного повітря, наддувний колектор від охолоджувача до випускних клапанів, циліндр, випускний колектор, перетворювачі імпульсів, турбіна, глушитель. Для кожної розрахункової зони складається своя система рівнянь, рішення якої дозволяє визначити параметри робочого тіла (газу) у ній. При термодинамічному підході ця система включає чотири рівняння. Це рівняння збереження енергії (2.2), маси (2.3), рівняння стану (2.4) і рівняння V=f (цо ) (1.5), що мають вид:
(2.2)
(2.3)
(2.4)
(2.5)
де u - внутрішня енергія газу в розглянутій зоні;
qv - інтенсивність об'ємного джерела теплоти в розглянутій зоні;
qsj - інтенсивність теплообміну через контрольну поверхню;
Fq – площа контрольної поверхні, на котру діє джерело теплоти;