Дипломная работа: Насыщенные формации заданной структурой подформаций

Пусть и - некоторые -насыщенные формации. Тогда через обозначают класс групп, равный .

Вместо пишут .

Следующая теорема для -локальных формаций является аналогом известной теоремы Гашюца--Любезедер--Шмида , , .

Теорема. Пусть - формация. Тогда следующие утверждения эквивалентны:

Формация -насыщенная;

для всех ;

, где и для всех ;

Формация -локальна.

Доказательство. Импликация доказана в работе . Пусть выполняется условие 2) и Включение очевидно. Предположим, что обратное включение неверно и - группа минимального порядка из с минимальной нормальной подгруппой . Если - -группа, то . Значит

противоречие. Следовательно, . Пусть . Если - неабелева группа, то Поэтому

что противоречит выбору группы . Значит, - -группа. Ввиду теоремы работы формация является -насыщенной, откуда вытекает, что , т.е. . Тогда и, следовательно,

Полученное противоречие показывает, что . Таким образом, .

Предположим теперь выполнимость условия и допустим, что формация не является -насыщенной. Тогда найдется такое число и такая группа с нормальной подгруппой , что , но . Поскольку для простых и , получаем и для всех . Следовательно, . Полученное противоречие завершает доказательство теоремы.

Пусть - произвольный набор -локальных спутников. Через обозначают такой -локальный спутник , что для всех .

Если для всех , то полагают, что .

Лемма. Пусть , где . Тогда , где .

Доказательство. Пусть выполнены условия леммы, т.е. , где и пусть . Тогда по условию . Следовательно, для любого . Но, так как для всех имеет место , то для всех и . Тогда всех и . Таким образом получаем, что . Лемма доказана.

Определение.Пусть такая совокупность формаций, что либо , либо , где , . Такую совокупность формаций называют цепью формаций.

Определение.Цепью -локальных спутников называют такую совокупность -локальных спутников , что либо , либо , где , .

Лемма. Пусть - цепь формаций, - такая цепь -локальных спутников, что и для всех имеет место в точности тогда, когда для всех . Тогда , где для каждого .

Доказательство. Пусть - цепь формаций и - такая цепь -локальных спутников, что , причем для всех выполнено в точности тогда, когда для любого .

Пусть .Т. е. существует номер такой, что . Следовательно, для любого и . Тогда для любого и Это означает, что . Пусть теперь . Следовательно, для любого и

Тогда существует такой номер , что для любого и . Тогда получаем, что . Следовательно, . Лемма доказана.

Лемма. Если = и , для некоторого , то .

Доказательство. Прежде заметим, что поскольку , то . А поскольку и для всех имеет место то и . Значит, . Лемма доказана.

Определение.Непустое множество формаций называют полурешеткой формаций, если пересечение любого множества из снова принадлежит .

Определение.Пусть - формация, имеющая -локальный спутник . Если является минимальным (максимальным) элементом множества всех -локальных спутников формации , то называют минимальным (соответственно максимальным) -локальным спутником формации .

К-во Просмотров: 220
Бесплатно скачать Дипломная работа: Насыщенные формации заданной структурой подформаций