Дипломная работа: Некоторые вопросы анализа деловых проблем

Таблица 2.1. Упрощенный вид морфологической таблицы

ПСИХОЛОГИЧЕСКОЕ ВОЗДЕЙСТВИЕ ЭКОНОМИЧЕСКОЕ ВОЗДЕЙСТВИЕ

Покупатель 1.Реклама

2.Обещание «бесплатных»

дополнительных услуг

1.сервисное обслуживание

2.Скидка или кредит постоянным покупателям

Поставщик 1.Встречные услуги

2.Контакты с конкурен-

том поставщика

1.Закупка оптом

2.Самовывоз

В рамках морфологического анализа можно рассматривать и задачи с достаточно большим числом варьируемых переменных, (то есть не только те две переменные, объект — способ воздействия, о которых написано раньше).

Широкое применение в настоящее время получили специальные математические методы, используемые в сложных и объемных (с большим числом учитываемых факторов) ситуациях. В качестве примера опишем метод «Стоимость — эффективность».

Допустим, решается вопрос об определении количества рекламных щитов с информацией о товарах вашей фирмы. С помощью экспертов или из статистических данных можно оценить (и довольно точно!) связь объемов продаж с количеством щитов. С другой стороны, можно подсчитать (достаточно точно!) общие затраты как функцию числа щитов. Эта функция может расти нелинейно, так как при изготовлении большего числа щитов может возникнуть экономия (на накладных и транспортных расходах, скидка при оптовых закупках и т. д.). Затем ЛПР совместно анализирует связь эффективности рекламы и ее стоимости. В простейшем случае можно ориентироваться на отношение стоимости к результату, то есть на отношение затрат на рекламу к доходу от продаж. Можно сравнивать дополнительные затраты на рекламу с дополнительным доходом, который приносит эта реклама. Иногда ЛПР фиксирует определенную желательную эффективность и минимизирует затраты или, наоборот, задается бюджетным ограничением на затраты и стремится максимизировать эффективность.

Как понятно из приведенного примера, метод «Стоимость — эффективность» — это оптимизационный подход к достаточно объемным или громоздким задачам, а также к задачам, в которых есть трудности с представлением исходной информации (о такой ситуации речь будет идти в следующем пункте).

Как правило, умелое сочетание науки, математических методов и искусства менеджера дает хорошие результаты при использовании подхода «Стоимость — эффективность».

§ 2.2. Поиск решений в расплывчатых условиях

Для формализованного описания реальных ситуаций, в которых нет полной определенности и однозначности, сейчас используется такой математический аппарат, как теория нечетких множеств.

Термин "fuzzysets", введенный Л. Заде, переводится по-разному: размытые, нечеткие, нечетко определенные, расплывчатые и т. д. множества. С использованием этого термина был дан ряд определений и введены понятия, на основе которых построен новый математический аппарат. Одной из областей применения этого аппарата является теория принятия решений.

Математический аппарат нечетких множеств достаточно сложен (во всяком случае достаточно необычен); большого распространения и применения нечеткие множества еще пока не получили; по-видимому, теория нечетких множеств пока далеко не на таком уровне кристаллизации и завершенности, как классические разделы высшей математики (это, бесспорно, положительное качество для исследователя, но сомнительное достоинство для студента). Но есть мотивы, в силу которых кратко, на описательном уровне ниже рассказывается о применении теории нечетких множеств при принятии решений:

• методы этой теории хорошо соотносятся с образом человеческого мышления, и знакомство с нечеткими множествами позволяет, с одной стороны, более осознанно и более эффективно разрабатывать и принимать решения, а с другой стороны, способствует формированию правильной профессиональной психологии;

• ясно, что со временем теория нечетких множеств будет иметь более широкое распространение, чем сейчас, поэтому первое знакомство с ней откладывать не стоит (уже есть сообщения о том, что с использованием методов этой теории получены технические решения, реализованные в высококачественной видео- и фотоаппаратуре).

Естественно, рассмотрение материала должно начинаться с определения основного понятия — понятия расплывчатого (нечеткого) множества.

Пусть Х = {х} — совокупность объектов, обозначенных через х. Расплывчатое множество А в X есть совокупность упорядоченных пар А = {х, µа (х)}, х Є X, µа (х) — степень принадлежности х множеству А, то есть µа (х) — это функция, ставящая каждому элементу х из X в соответствие какое-то (одно) число из отрезка [0; 1].

Обычное множество — это множество, для которого ц равно либо нулю, либо единице, скажем, множество четных чисел. Примером нечеткого множества может быть множество А «несколько чисел» для множества X= {0; 1; 2;...} всех неотрицательных чисел.

А = {(1; 0,0), (2; 0,05), (3; 0,2), (4; 0,6), (5; 0,8), (6; 1,0), (7; 1,0), (8; 0,8), (9; 0,6), (10; 0,2), (11; 0,05), (12; 0,0)}.

В данном примере утверждается, что одно число еще не может, а 12 чисел уже могут попадать в множество «нескольких чисел», два числа и одиннадцать чисел лишь при очень большом желании, образно говоря, могут быть охарактеризованы как несколько чисел, 6 или 7 чисел признаются таким количеством чисел, которые в данном контексте, бесспорно, отнесены автором примера к числу объектов, обладающих определенным свойством, и т. д.

Рассмотрим еще один пример, иллюстрирующий, как используются нечеткие множества. Пусть примерно прямая линия АБ — это любая линия, проходящая через точки А и Б так, что расстояние d, от каждой точки АБ до («истинной») прямой (АБ)° по отношению к длине (АБ)° мало, d— нечеткая переменная (читатель может сам определить d). Примерно средней точкой М на АБ назовем такую точку, расстояние от которой до М° — середины (АБ)° — мало.

С использованием приведенных понятий можно для известной теоремы о трех медианах треугольника (три медианы треугольника пересекаются в одной точке) сформулировать аналог — нечеткую теорему. Пусть АВС — примерно равносторонний треугольник с вершинами А, В, С, а М1 , М2 , М3 — примерно середины сторон ВС, АС, АВ.

Тогда примерно прямые АМ1 , ВМ2 , СМз образуют «примерно» треугольник Т1 Т2 T3 , который более или менее мал в сравнении с треугольником АВС (рис. 2.2).

К-во Просмотров: 979
Бесплатно скачать Дипломная работа: Некоторые вопросы анализа деловых проблем