Дипломная работа: Некоторые вопросы анализа деловых проблем

Рис. 2.2. Нечеткая теорема о трех «медианах»

Конечно, приведенные примеры скорее забавны, чем практически полезны, но дело в том, что мы постоянно пользуемся нечеткими понятиями, рассуждениями, множествами, теоремами:

• у корпорации X прекрасные перспективы;

• на фондовой бирже наблюдается резкий спад;

• корпорация У использует прогрессивную технологию и т. д.

Обратите внимание на то, что для описания расплывчатости недостаточно теории вероятностей и статистических методов, они предназначены для работы со случайностью, когда речь идет о принадлежности некоторого объекта к четкому множеству. Скажем, последний из приведенных примеров содержит расплывчатое утверждение вследствие неточности, нечеткости выражения «прогрессивная технология», в то время как утверждение «вероятность того, что фирма 2 работает в убыток, равна 0,8» содержит информацию о мере неопределенности относительно принадлежности 2 к четкому множеству фирм, работающих в убыток.

Люди, в отличие от ЭВМ, обладают способностями оперировать расплывчатыми понятиями и выполнять расплывчатые инструкции (вспомните русскую народную сказку, в которой герой блестяще выполнил одну из таких инструкций: «Пойди туда, не знаю куда, принеси то, не знаю что»). Люди также способны на интуитивном уровне оперировать с расплывчатыми целями («Фирме надо сохранить за собой около 15—20% рынка»), расплывчатыми ограничениями («Фирма не может потратить на рекламу значительную часть квартального дохода») и с расплывчатыми решениями («На рекламу будет выделено около 5—8% дохода»).

При том подходе к принятию решений в расплывчатых условиях, который развит Р. Беллманом и Л. Заде, и цель, и ограничения рассматриваются как расплывчатые множества в пространстве альтернатив.

Если X = {х} — заданное множество альтернатив, то расплывчатая цель Q отождествляется с фиксированным расплывчатым множеством Q в X. Например, если X — действительная прямая, а расплывчатая цель формулируется как «х должно быть значительно больше 10» (скажем, доход должен быть таким в каких-то известных единицах), то эту цель можно представить как расплывчатое множество с функцией принадлежности

Расплывчатое ограничение С в пространстве X определяется таким же образом, то есть как некоторое расплывчатое множество в X. Если, как и для цели, X — действительная прямая, то ограничение «х должно быть приблизительно в окрестности 15» (такими могут быть ограничения на затраты) представимо с помощью функции принадлежности

Если в пространстве альтернатив X заданы расплывчатая цель Q и расплывчатое ограничение С, то расплывчатое множество D, образованное пересечением Q и С, называется расплывчатым решением. В специальных работах показано, что для D = Q П С,

будет

В условиях приводимых выше примеров

Взаимосвязь расплывчатых цели, ограничений и решения показана на рис, 2,3.

В том случае, когда расплывчатая цель Q задана в множестве У = {у}, а ограничение — в множестве X = {х}, причем х — причина, у — следствие и есть отображение f множества из X в У, можно для Q из У найти в X множество Q, порождающее Q. Функция принадлежности Q задается равенством µQ (х) =µQ (f(х)).

Рис.2.3. Нахождение расплывчатого решения

d — сплошная линия на рисунке, который несколько деформирован по сравнению с истинным для большей наглядности;

х' — оптимальное решение)

Решение в этом случае ищется, как и раньше, в виде пересечения Q и С:

Так, в простейшем случае используются нечеткие величины при принятии решений.

В силу очевидных причин затронутые вопросы в большей мере сейчас не рассматриваются. Будем надеяться, что изложенный материал, пользуясь терминологией данного пункта, будет для вас, читатель, «достаточно полезен».

§ 2.3. Поиск решений при наличии многокритериальных альтернатив

В разделе, посвященном исследованию операций, коротко было рассказано о многокритериальных оптимизационных задачах. Этот рассказ, касающийся математических аспектов ситуаций, когда имеется несколько критериев, — необходимая часть сведений, которыми должен быть вооружен менеджер, но только часть сведений, касающихся принятия решений при большом числе альтернативных вариантов выбора и значительном числе разнородных критериев, когда ЛПР не может, вообще говоря, в одиночку, самостоятельно составить целостную картину качества альтернативных вариантов. Есть различные методы организации деятельности ЛПР в таких условиях, ни один из них не претендует на универсальность. Из-за ограниченности объема данного пособия мы обсудим только один из возможных подходов, позволяющий учесть специфику получения информации от ЛПР и экспертов, которые в подобной ситуации крайне необходимы.

Перечислим основные положения, которые должны учитываться при построении многокритериальных моделей задач принятия решений:

К-во Просмотров: 978
Бесплатно скачать Дипломная работа: Некоторые вопросы анализа деловых проблем