Дипломная работа: Нильпотентная длина конечных групп с известными добавлениями к максимальным подгруппам
Лемма 1.2. (1) ; если разрешима и , то ;
(2)
(3) если , то ; если, кроме того, абелева, то
Proof. (1) Поскольку подгруппа Фраттини - нильпотентная нормальная подгруппа группы , то . Пусть - разрешимая неединичная группа. Тогда разрешима и неединична. Пусть
Так как - -группа для некоторого простого , то по следствию 4.2, с. 35, подгруппа нильпотентна и . Следовательно, .
(2) Если , то - нильпотентная нормальная в подгруппа по теореме 4.3, с. 35, поэтому и
Обратное включение следует из определения подгруппы Фиттинга.
(3) Для минимальной нормальной подгруппы либо , либо . Если , то
Если , то - элементарная абелева -группа для некоторого простого . Так как , то . С другой стороны, по теореме 4.4, с. 35, поэтому .
Теорема 1.3. для любого . В частности, если разрешима, то
Proof. Пусть , . Так как по лемме 4.5, с. 35, то . Предположим, что для некоторого и пусть
Ясно, что и Пусть - силовская -подгруппа группы . Так как
-группа, то , а поскольку , то и . Теперь, - нильпотентная нормальная подгруппа группы и . Таким образом, и первое утверждение доказано. Если разрешима, то разрешима, поэтому и .
Говорят, что подгруппа группы дополняема в , если существует такая подгруппа , что и . В этом случае подгруппу называют дополнением к подгруппе в группе
Теорема 1.4. Если - нильпотентная нормальная подгруппа группы и , то дополняема в .
Proof. По условию а по теореме 4.6, с. 35, коммутант . По теореме 4.7, с. 35, подгруппа Фраттини а по условию Поэтому и абелева. Пусть - добавление к в . По лемме 4.8, с. 35, Поскольку и то и по теореме 4.7, с. 35,
Следовательно, и - дополнение к в .
Теорема 1.5. Факторгруппа есть прямое произведение абелевых минимальных нормальных подгрупп группы .
Proof. Предположим вначале, что и обозначим через подгруппу Фиттинга По теореме 4.6 коммутант Но значит по теореме 4.7, с. 35. Поэтому и абелева. Пусть - прямое произведение абелевых минимальных нормальных подгрупп группы наибольшего порядка. Тогда и по теореме 1.4 существует подгруппа такая, что По тождеству Дедекинда Но абелева, поэтому а так как , то По выбору пересечение и
Пусть теперь и По лемме 1.2(2) Так как то для утверждение уже доказано.
Следствие 1.6. В разрешимой группе с единичной подгруппой Фраттини подгруппа Фиттинга есть прямое произведение минимальных нормальных подгрупп.
Теорема 1.7. Подгруппа Фиттинга совпадает с пересечением централизаторов главных факторов группы.
Proof. Пусть