Дипломная работа: Однокритериальный измеритель частотной избирательности радиоприёмника
Так как величина известна заранее, то аппаратурная реализация вычислений по выражению (2.1) не представляет значительного труда. Эту функцию выполняет вычислитель т.е. микроконтроллер.
Можно показать, что измеряемая величина монотонно связана с эквивалентной по числу проникающих сигналов полосой пропускания , являющейся расчётной статистической характеристикой, реальной частотной избирательности РПрУ.
Вид функциональной зависимости величин и , в общем случае, зависит от соотношения динамического диапазона радиоприёмника и диапазона мощностей помех, действующих на его входе.
При использовании метода существует проблема сокращения времени измерения. Пути решения проблемы могут быть определены, исходя из анализа, общего выражения для времени измерения, которое в первом приближении может быть получено из следующих соображений.
С определенной погрешностью можно считать, что динамические эффекты в контролируемом РПрУ отсутствуют, если скорость перестройки частоты испытательного сигнала не превышает величины:
(2.2)
где Гц - полоса пропускания контролируемого РПрУ.
На нелинейных элементах РПрУ интермодуляционные каналы приёма образуются преобразованием функций и по закону:
(2.3)
где и - целые числа; порядок интермодуляции.
Пусть скорость перестройки первого генератора намного больше скорости перестройки второго генератора . В этом случае скорость перестройки -ой гармоники первого генератора не должна превышать величины . При этом должно выполняться неравенство:
(2.4)
Подставляя в (2.4) выражение (2.2), получим:
(2.5)
При этом сканирование УГ1 в пределах диапазона Df произойдет за время:
(2.6)
При дискретном изменении частоты второго генератора в диапазоне Df дискретность не должна превышать величины .
Таким образом, количество перестроек второго генератора в диапазоне Df равно:
(2.7)
Минимальное время, в течении которого частота второго генератора УГ2 остается постоянной, не должно превышать времени . При этом перестройка УГ2 в диапазоне Df произойдет за время:
,
или, с учётом (6) и (7), получим:
(2.8)
Зависимость P(t), имитирующая заданное распределение w(P), реализуется с помощью УА, имеющего h уровней затухания. Период времени, в течении которого уровень мощности зондирующего сигнала остается постоянным, не должен быть меньше . Поэтому общее минимальное время измерения составит:
(2.9)
При этом имеется ввиду, что обработка получаемой информации происходит в течении времени измерения.
Таким образом, время измерения определяется: количеством h уровней УА, зависящим, в общем случае, от диапазона мощностей DP испытательных сигналов и требуемой точности измерений; диапазоном частот Df испытательных сигналов; наибольшим номером гармоники испытательного сигнала, оказывающей влияние на результат измерений и полосы испытуемого РПрУ.
Величина может быть оценена исходя из того, что амплитуды высшие составляющих с ростом номера гармоники быстро падают, и практически имеет смысл учитывать порядок интермодуляции не более 10.
Динамический диапазон зондирующего сигнала по мощности