Дипломная работа: Плазменное поверхностное упрочнение металлов

Мгновенная скорость охлаждения:

(2.13)

W = dT / dt

Уравнение распространения тепла для случая упрочнения плазменной дугой для точек, расположенных под центром анодного пятна, при скорости перемещения υ<3бм\ч имеет вид [10]

(2.14)

r - радиус анодного пятна;

ξ - координата (глубина).

Расчет по уравнению (2.12 – 2.14) показывает, что температура нагрева материала регулируется в интервале от начальной температуры до температуры плавления, скорость охлаждения от 104 до 106 º С\с.

При действии на поверхность полубесконечного тела теплового источника движущегося вдоль оси X, следует различать медленнодвижущийея, быстродвижу-щийся и импульсный источники тепла. Первый случай имеет место тогда, когда теплонасыщение успевает произойти раньше, чем пятно нагрева пройдет расстояние, равное радиусу пятна нагрева. При этом максимальная температура нагрева материала находится в центре пятна нагрева. По мере увеличения скорости перемеще­ния теплового источника максимум температуры сдвигается к краю нагрева, в сторону, противоположную направлению перемещения теплового источника. Если теп­ловой источник движется с постоянной скоростью, то через определенный проме­жуток времени температурное поле вокруг движущегося источника стабилизирует­ся. При упрочнении импульсной плазменной струей, время распространения теплового потока соизмеримо со временем воздействия плазменной струи на материал. В реальных условиях после прекращения действия теплового источника происходит выравнивание температуры. При этом в начальный момент времени, после прекращения действия происходит продвижение изотермы с фиксированной температурой в глубь материала и после достижения определенной глубиныZmax имеет место, об­ратное перемещению данной изотермы [1,7]. Для одномерного случая температура любой точки материала на оси теплового источника, расположенного ниже плоскости Z = 0, определяется из выражения:

(2.15)

где Z -расстояние по оси;

ierfc - функция интеграла вероятности;

τим - длительность нагрева;

r- радиус пятна нагрева;

а, λ - коэффициенты температуропроводности и теплопроводности. При0 < 1 < τим в уравнении (2.5) приводится к упрощенному виду [1,7]

(2.16)

Плотность энергии в пятне нагрева W выражается по следующей зависимо­сти:

гдеgэф - эффективная тепловая мощность плазменной струи(дуги),

τ- длительность нагрева,

d - диаметр пятна нагрева.

С целью последующего вычисления протяженности по глубине зоны нагрева до температуры Т удобно использовать выражение для расчета температур в неяв­ном виде, полученное при допущении τ n ››√ at

(2.17)

где Z - глубина нагрева до температурыT ( z , t );

К-во Просмотров: 519
Бесплатно скачать Дипломная работа: Плазменное поверхностное упрочнение металлов