Дипломная работа: Постановка методики определения таурина с целью изучения обменных процессов в мягких контактных
Таурин, вследствие амфотерного характера не удается непосредственно титровать раствором щелочи. Титрование оказывается возможным, если блокировать аминогруппу действием формальдегида:
H2N—(CH2)2—SO3OH + CH2O = CH2=N—(CH2)2—SO3H + Н2O.
Образующееся соединение можно титровать алкалиметрически с индикатором фенолфталеином в соответствии с уравнением реакции [5]:
CH2=N—(CH2)2—SO3H + NaOH D CH2=N—(CH2)2—SO3Na + Н2O.
1.2.2 Анализ аминокислот методом тонкослойной хроматографии
Разработка методов количественного и качественного анализов аминокислот (АК) является важной задачей многих отраслей науки: медицины, биохимии, микробиологии, пищевой промышленности, фармакологии и сельского хозяйства. В настоящее время наиболее эффективно при массовых анализах может быть использована тонкослойная хроматография [12] (ТСХ). Денситометрия применяется для количественной тонкослойной хроматографии в качестве альтернативы методу высокоэффективной жидкостной хроматографии (ВЭЖХ), требующей дорогостоящего оборудования и расходных материалов. Применяют методы разделения свободных аминокислот и их производных с использованием одномерного и двухмерного вариантов тонкослойной хроматографии с последующей денситометрической обработкой хроматограмм. Программа "Dens" позволяет обрабатывать хроматограммы, полученные в двух вариантах с относительной погрешностью не более 3%. Двухмерная ТСХ дает возможность разделить большое количество соединений (до 22 наиболее важных аминокислот, в том числе и таурин) на коротком расстоянии проявления (стандартная пластина размером 10х10 см). Одномерная ТСХ позволяет анализировать до десяти и более образцов аминокислот одновременно. В работе [12] показана возможность разделения смеси 22-х свободных аминокислот методом двухмерной ТСХ (рис. 1.1).
Рис. 1.1. Вид хроматограммы при ТСХ – разделении аминокислот с использованием нингидрина как проявителя.
В последнее время широко используются AAA-Direct [17] системы для анализа аминокислот. Для такого анализа, характерна комбинация анионо-обменной хроматографии и амперометрического определения.
Достоинствами этого метода являются:
· Пределы определения от минимального до среднего диапазона (в пикомолях), без дериваций.
· Приблизительно в 50 раз более чувствительный, чем анализ на основе нингидрина, и конкурентоспособный с методом предколоночной деривации.
· Определяет аминокислоты, фосфоаминокислоты, углеводы, аминосахариды – за один отбор.
· Быстрый количественный анализ аминокислот, таких как триптофан и серосодержащие аминокислоты.
BioLC® AAA-Direct конфигурация анализа аминокислот – усовершенствованное определение аминокислот. В отличие от других существующих методик, аминокислоты определяются непосредственно. С высокочувствительной, встроенной функцией импульсного амперометрического определения нет необходимости в предварительной или постколоночной деривации. Такая функция предлагает прямое определение первичных и вторичных аминокислот, аминосахаридов, фосфоаминокислот и основных продуктов окисления серосодержащих аминокислот (напр. цистеиновая кислота) в фемтомолях – пикомолях пределах диапазона определения с чувствительностью в 50 раз выше, чем в методике, основанной на нингидрине.
1.2.3 Электрохимические методы определения аминонокислот
Метод обращенно-фазовой ВЭЖХ с электрохимическим детектором [6] позволяет определить аминокислоты на уровне пикомоль. По этому методу можно определить 15 аминокислот в сыворотке крови человека. Так как немодифицированные аминокислоты не обладают электрохимической активностью, для детектирования их переводят в производные. Разделение производных проводят в градиентном или изократическом режимах элюирования. Из реагентов для получения производных только о-фталевый альдегид (ОФА), нафталин-2,3-дикарбоксиальдегид и 7-фтор-4-нитробензо-2-окса-1,3-диазол образуют с аминокислотами производные, обладающие электрохимической активностью. В качестве серосодержащих компонентов о-фталевого реагента используют 2-меркаптоэтанол или сульфит натрия. Общая продолжительность разделения 80 мин. Пределы обнаружения 0,5-5 пмоль. Методика применена для определения глутаминовой кислоты, аспарагина, серина, глутамина, гистидина, таурина, аланина, аргинина, метионина, изолейцина, орнитина, лейцина, фенилаланина, лизина и триптофана в сыворотке крови человека.
Для анализа нейромедиаторных аминокислот в реальных объектах используют обращено-фазовую ВЭЖХ с флуоресцентным или электрохимическим детектированием [7]. И поскольку, аминокислоты – нелетучие, неокрашенные соединения, слабо поглощающие в ультрафиолетовой области спектра, для их обнаружения также используется перевод в производные, обладающие флуоресцентной и электрохимической активностью. Наиболее широко применяется способ пред- и постколоночной дериватизации аминокислот, содержащих первичную аминогруппу, является образование изоиндолов при реакции с о-фталевым альдегидом и тиолами. Используя данную методику, можно в режиме изократического элюирования количественно определить глутаминовую кислоту, аспарагин, серин, глутамин, гистидин, таурин, аланин, аргинин и гаммааминомасляную кислоту в спинномозговой жидкости за 55 мин. Предел обнаружения 0,5-10 пмоль.
Реакцию о-фталевого альдегида с аминосодержащими соединениями в присутствии нуклеофильных агентов широко используют для чувствительного электрохимического, спектрометрического и флуориметрическое определения аминокислот [8]. В результате этой реакции образуются интенсивно флуоресцирующие продукты. С аминокислотами реакция идет по схеме:
где R-остаток аминокислоты, НХ-нуклеофильный агент, соединение Ι-замещенный изоиндол. В качестве нуклеофильных агентов могут выступать алкилмеркаптаны, меркаптопроизводные спиртов и органических кислот, а также сульфит- и цианид-ионы. Аналитические характеристики метода не уступают методу с использованием 2-меркаптоэтанола, а устойчивость аналитической формы – замещенных изоиндолов – существенно выше.
Разработан экспресс-метод идентификации и определения 11 аминокислот в их смеси с использованием прибора капиллярного электрофореза без их предварительной дериватизации и модифицирующих добавок к буферному раствору [9]. Содержание компонентов определяют с помощью фотометрического детектора. Этот метод в отличие от метода ВЭЖХ обладает рядом преимуществ: высокой эффективностью разделения, малым расходом реактивов, экспрессностью анализа и простотой аппаратурного оформления. Разделения смеси аминокислот в капилляре добиваются использованием различного рода добавок к фоновому электролиту. В частности, применяют метанол, ацетон, смесь раствора тетрабората натрия и изопропанола. Время анализа составляет ~15 мин. Диапазон определяемых концентраций 1-1000 мг/л. По методике можно определить глутаминовую кислоту, глутамин, аргинин, метионин, изолейцин, лейцин, фенилаланин, триптофан и др.
В последнее время широкое распространение в вольтамперометрии органических соединений получили химически модифицированные электроды (ХМЭ). Отличительной особенностью этих электродов является высокая селективность, которая достигается в результате взаимодействия модификатор-анализируемый компонент. Так, для вольтамперометрического определения цистеина используют угольно-пастовый электрод (УПЭ), модифицированный циклогексилбутиратом кобальта (II), меди (II), эфиром дибензо-18-краун-6 и его производными. Накопление аминокислоты на поверхности этих электродов происходит в виде соответствующего комплекса. Электрод, модифицированный оксидом рутения (IV), можно использовать для определения цистеина и цистина [14]. Способ инверсионно-вольтамперометрического определения позволяет анализировать такие серосодержащие аминокислоты, как цистеин, гомоцистеин и глутатион на УПЭ, модифицированных краун-эфирами дибензо-18-краун-6 или дибромдибензо-18-краун-6 [13]. Диапазон определяемых концентраций (2-5)·10-8 моль/л. В условиях проточно-инжекционного анализа разработана методика электрокаталитического определения серосодержащих аминокислот на графитовом электроде, модифицированном неорганической пленкой из гексацианоферрата (II) рутения (III) [15]. В качестве графитового материала используют стеклоуглерод или угольную пасту.
1.2.4 Фотометрические методы
Фотометрические методы основаны на измерении поглощения веществом светового излучения. В фотометрии применимы химические реакции, в результате которых получаются окрашенные продукты постоянного состава с высокой интенсивностью окраски. Фотометрические реакции органических соединений основаны на введении или создании в молекуле органического соединения системы сопряженных связей и образовании комплексных соединений. В фотометрических определениях аминокислот в качестве реагентов используют ароматические альдегиды (с образованием оснований Шиффа); ароматические амины (продукт – азосоединение); 1,2-нафтохинон-4-сульфокислоту (продукт – индонафтол); нингидрин (продукт – фиолетовый Руэмана) [18].
Определение тауфона в воздухе с 1,2-нафтохинон-4-сульфокислотой
Измерение концентрации таурина (в работе [21] – тауфона) в воздухе рабочей зоны используется как метод контроля на промышленных предприятиях. Метод основан на реакции взаимодействия тауфона с 1,2-нафтохинон-4-сульфокислотой в щелочной среде и последующем фотометрическом измерении окрашенного в желтый цвет продукта реакции при длине волны 440 нм. Отбор проб проводят концентрированием на фильтр. Нижний предел измерения содержания тауфона в анализируемом объеме раствора - 25 мкг. Нижний предел измерения концентрации тауфона в воздухе (при отборе 10 л воздуха) - 2,5 мг/м 3. Диапазон измеряемых концентраций в воздухе от 2,5 до 25 мг/м 3. Метод избирателен на стадии сушки и фасовки продукта. Определению тауфона мешают амины. Суммарная погрешность измерения не превышает ±15%. Время выполнения измерения, включая отбор проб - 40 мин.
Степень десорбции тауфона составляет 98,5%. Количественное определение содержания тауфона (мкг) в анализируемой пробе проводят по предварительно построенному градуировочному графику.
Определения, основанные на реакции с нингидрином
Растворы аминокислот, полипептидов, пептонов и первичных аминов при нагревании с нингидрином (1,2,3-индантрион) (НГ) приобретают синюю или фиолетовую окраску. Реакции между НГ и указанными соединениями протекают сложно (вещества претерпевают глубокое превращение). Предполагают, что сначала НГ восстанавливается, а аминокислоты окисляются, что сопровождается их декарбоксилированием и дезаминированием.