Дипломная работа: Проектирование электроэнергетических систем и сетей
При расчете ДЭП СВН:
Рассчитаны ее волновые параметры.
Проведена проверка по условию перенапряжения в середине ДЭП СВН и запасу по предельной передаваемой мощности.
При проектировании районной электрической сети:
Выбран оптимальный вариант районной сети. Для оптимального варианта
сети просчитаны максимальный, минимальный и аварийный режимы ее работы, определены потоки мощности во всех этих режимах, а также ее срок
окупаемости (из технико-экономического расчета). По наибольшей мощности, которую потребляет районная сеть, выбран автотрансформатор,
связывающий ДЭП СВН и районную сеть.
Выбрана основная часть оборудования на одной подстанции районной сети по рассчитанным токам к. з.
Приведены экспериментальные исследования режимов работы трансформаторов системы резистивного заземления нейтрали
2. введение
2.1 роль электропередач в современной электроэнергетике
Электропередачи сверхвысоких напряжений играют важную роль в современной энергетике, обеспечивая выдачу мощности от крупных электростанций и являясь связующими звеньями в единой энергосистеме страны.
В современной электроэнергетике можно выделить два типа линий электропередачи - магистральные электропередачи, служащие для передачи больших мощностей на значительные расстояния, и линии распределительной сети, по которым электроэнергия доставляется непосредственно к потребителям.
Развитие электроэнергетических систем во всем мире характеризуются процессом их слияния во все более крупные объединения. Этот процесс сопровождается сооружением мощных межсистемных связей, разуплотнением графиков нагрузки объединенных систем, снижением их суммарных максимумов и необходимого аварийного резерва мощности, а также некоторым увеличением числа часов использования установленной мощности электростанций.
Характер межсистемных связей определяются удаленностью объединяемых систем и условиями баланса активной мощности в каждой из частей объединенной системы в тот или иной период времени. Такие связи могут быть реверсивными и служить для передачи преимущественно пиковых мощностей и магистральными, служащими для покрытия постоянного дефицита в одной из объединяемых частей.
Объединение электростанций в энергосистемы дает ряд преимуществ:
повышается надежность электроснабжения потребителей;
уменьшается требуемый резерв мощности в энергосистеме;
улучшаются условия загрузки агрегатов благодаря выравниванию графика нагрузки и снижению максимума нагрузки энергосистемы;
появляется возможность более полного использования генерирующих мощностей электростанций, обусловленная различием в их географическом месторасположении по широте и долготе;
улучшаются технико-экономические показатели энергетики из-за возможности использования более мощных и экономичных агрегатов;
улучшаются условия эксплуатации энергохозяйства;
создаются условия для оптимального управления развитием и режимами работы энергетики в целом как подсистемы народного хозяйства страны, для создания автоматизированной системы диспетчерского управления энергосистемами (АСДУ), а также для создания автоматизированной системы управления энергетикой как отраслью народного хозяйства (АСУ Энергия).
Оперативное управление энергосистемами осуществляется их диспетчерскими службами, устанавливающими на основании соответствующих расчетов оптимальный режим работы электростанций и сетей различного напряжения. Расчеты режимов работы сложных энергосистем выполняются с использованием электронных вычислительных машин (ЭВМ) и вычислительных комплексов
3. расчет режимов дальних электропередач
3.1 исходные данные
Необходимо выбрать линию эл. передачи U-ем 500кВ между эл. ст. и п/ст. эн. системы.
Требуется рассчитать режимы MAX и MIN нагрузок. PMIN = 0,7 PMAX. В режиме MIN нагрузок принимаем, что одна эл. машина (ген-р) находиться в ремонте.
Для этих режимов необходимо проверить балансы реактивной мощности по концам эл. передач. При не соблюдении баланса рассматриваем следующие возможности:
1) изменение уровня напряжений;
2) установка шунтирующих реакторов;
3) установка синхронных компенсаторов.