Дипломная работа: Радиолокационные установки

.

Выражение (1.28) может быть аппроксимировано с использованием безразмерного дифракционного параметра Френеля - Кирхгофа:

, (1.29)

где a подставляется в радианах, все остальные параметры - в метрах. Таким образом, разность фаз Ф может быть вычислена из выражения

. (1.30)

Из выражения (1.30) следует, что сдвиг фазы между прямым и дифракционным лучами является функцией высоты h и взаимного расположения препятствия, излучателя и приемника.

Дифракционные потери мощности в радиоканале могут быть объяснены с помощью зон Френеля. Зоны Френеля представляют собой области, разность хода через которые от излучателя до приемника составляет nl/2 по сравнению с прямым лучом (l - длина волны, n - целое число).

В мобильной связи обычно наблюдается затенение части зон (источников вторичных волн) и, следовательно, уменьшение доли принятой мощности. В зависимости от геометрии препятствия принятая энергия определяется через векторное суммирование вторичных волн.


Рис.1.6 Формирование зон Френеля

Если препятствие не затеняет первую зону Френеля, то дифракционные потери минимальны и ими пренебрегают. Используют следующее свойство: если открыто не менее 55% первой зоны Френеля, то дальнейшее открытие первой зоны Френеля не уменьшает дифракционные потери.

1.3.2 Модель дифракции радиоволн на одиночном клине

Определение степени ослабления поля холмами и зданиями является достаточно сложной задачей при расчете зон обслуживания. Обычно точный расчет ослабления невозможен, поэтому используют методы расчета поля с необходимыми экспериментальными поправками.

Препятствие в виде одиночного холма или горы может быть обсчитано с использованием модели клина. Это простейшая модель препятствия, и быстрый расчет ослабления возможен с использованием классического решения Френеля для дифракции поля на полуплоскости.


Рис.1.7 Варианты перекрытия видимости антенн препятствием

Напряженность поля в точке расположения приемной антенны определяется векторной суммой вторичных источников, лежащих в плоскости, расположенной над препятствием. Напряженность поля при дифракции на клине определяется выражением

, (1.31)

где Е0 - напряженность поля в точке расположения приемной антенны при отсутствии препятствия и земли, а F (n) - комплексный интеграл Френеля. Значение интеграла F (n) определяется из графиков и таблиц.

Коэффициент дифракционного усиления с препятствием (обычно он меньше 1) по сравнению со свободным пространством

, дБ. (1.32)

График этой функции показан на рис.1.8


Gd , дБn

Рис.1.8 Зависимость коэффициента дифракционного усиления от значения параметра дифракции n

Приближенно можно считать:

(1.33a)

(1.33б)

(1.33в)

(1.33г)

К-во Просмотров: 595
Бесплатно скачать Дипломная работа: Радиолокационные установки