Дипломная работа: Радиолокационные установки

Измерения показали, что величина ослабления мощности в радиоканале описывается нормально-логарифмическим (равномерным в дБ) законом:

, дБ, (2.3a)

и

, дБ, (2.3б)

где xs - случайная величина c нормально-логарифмическим законом распределения со стандартной девиацией s, дБ.

Данные формулы могут быть использованы для расчета поля в реальных системах связи при наличии случайных ослабляющих сигнал факторов. На практике величины n и s обычно определяются из экспериментальных исследований (рис.12).

Поскольку значение PL (d) - случайная величина с нормальным распределением по шкале дБ от расстояния d, также случайно распределена и функция Pr (d). Для определения вероятности того, что принятый сигнал будет выше (или ниже) особого уровня, может быть использована функция Q:

, (2.4а)

где выполняется условие

. (2.4б)

Вероятность того, что принятый сигнал будет выше некоторой заданной величины g, может быть вычислена из накопительной функции плотности как

. (2.5)

Аналогично вероятность того, что принятая мощность будет меньше g:

(2.6)

Рис.12. Экспериментальные данные, иллюстрирующие ослабление радиоволн в условиях города (приведены данные измерений ослабления мощности радиоканалов для 6 городов Германии, из этих экспериментальных данных определены параметры n=2.7, s=11.8 дБ)

2.2 Модели радиолиний вне зданий

Радиолинии в мобильной связи часто проходят по неровным местностям. В этом случае следует учитывать реальный профиль трассы. Трасса может изменяться от гладкой до сильно пересеченной местности. Также следует учесть наличие зданий, деревьев и других препятствий при связи в условиях города. Негладкие трассы рассчитываются разными методами. Существующие методы расчета поля в реальных условиях связи сильно отличаются по подходу, сложности и точности. Большинство основано на использовании экспериментальных данных для обслуживаемого района. Ниже описаны некоторые методы.

2.2.1 Метод Okumura

Этот метод является одним из широко используемых методов для расчета радиолиний в условиях города. Он пригоден для частот 150 - 2000 МГц (хотя может быть экстраполирован до 3000 МГц) и расстояний от 1 до 100 км. Данный метод может быть использован, если эффективная высота подвеса базовой антенны составляет от 30 до 1000 м.

Okumura предложил сетку кривых для расчета среднего ослабления относительно ослабления в свободном пространстве Amu в условиях города с квазигладким профилем с изотропной передающей антенной, поднятой на эффективную высоту hte = 200 м и мобильной антенной высотой hre = 3 м. Графики получены в результате многих измерений с ненаправленными антеннами базовой станции и мобильного приемника и представлены в виде графика для диапазона частот 100-1920 МГц как функция дальности от 1 до 100 км.

Для определения потерь на радиолинии рассчитывается ослабление поля в свободном пространстве, затем по кривым графика (рис.13) определяется величина Am a (f,d) и добавляются к ослаблению в свободном пространстве с корректирующей поправкой, зависящей от степени неровности профиля трассы:

, дБ, (2.7)

гдеL50 - средняя величина потерь,

LF - потери в свободном пространстве,

Am a - усредненное дополнительное ослабление, обусловленное влиянием земной поверхности,

G (hte ) - эффективное усиление передающей антенны,

G (hre ) - эффективное усиление приемной антенны,

GAREA - поправочный коэффициент из графика на рис.14.

Рис.13. Частотная зависимость усредненного ослабления сигнала по отношению к свободному пространству для квазигладкого профиля трассы


К-во Просмотров: 572
Бесплатно скачать Дипломная работа: Радиолокационные установки