Дипломная работа: Разработка анимационно-обучающей программы механической системы
Рассмотрим твердое тело, находящееся в покое. Положим, на него одновременно подействовали двумя силами, равными по величине, но противоположно направленными и приложенными в двух точках A и B, не совпадающих с центром масс (рис. 3). Такая система сил называется парой сил. Каков характер движения тела?
Рис.3. Тело под действием сил поворачивается вокруг центра масс.
Результирующая приложенных к телу внешних сил равна нулю. Следовательно , центр масс тела должен остаться в покое. Тело, одна точка которого неподвижна, может, очевидно, только вращаться вокруг этой точки. И следовательно, тело под действием приложенной пары сил будет поворачиваться вокруг центра масс C. Иногда, руководствуясь только интуицией, приходят к ошибочному заключению, что в описанном случае тело должно вращаться вокруг точки О, расположенной между точками приложения пары сил.
§ 1.1.4 Движеие тел переменной массы. Уравнение мещерского. Формула циолковского
В природе и современной технике мы нередко сталкиваемся с движением тел, масса которых меняется со временем. Масса земли возрастет вследствие падения на нее метеоритов, масса метеорита при полете в атмосфере уменьшается в результате отрыва или сгорания его частиц, масса дрейфующей льдины возрастет при намерзании и убывает при таянии и т. д. Движение якоря с якорной цепью, когда все большее число звеньев цепи сходит с лебедки, -пример движения тела переменной массы. Ракеты все систем, реактивные самолеты, реактивные снаряды и мины также являются телами, масса которых изменяется во время движения.
Общие законы динамики тел с переменной массой были открыты и исследованы И. В. Мещерским и К. Э. Циолковским. Циолковским были разработаны фундаментальные проблемы реактивной техники, которые в наши дни служат основной для штурма человеком межпланетных пространств.
Для вывода основного уравнения движения тела переменной массы рассмотрим конкретный случай движения простейшей ракеты (рис. 4).
Мы будем рассматривать ракету достаточно малое тело, положение центра тяжести которого не меняется по мере сгорания пороха. В этом случае мы можем считать ракету материальной точкой переменной массы, совпадающей с центром тяжести ракеты.
?? ???????????? ??????-?????????? ??????? ???, ??????????? ??? ???????????? ?? ?????? ?????, ???????????? ??? ???????? ??????, ??????? ????? ?????????? ????? ?????????????.
Рис.4. Схема порохового снаряда: А-вырывается; В - граната с взрывателем; С – пороховая ракетная камера; D - стабилизатор.
Будем считать , что отбрасываемая от ракеты частица газа dM взаимодействует с ракетой M только в момент их непосредственного контакта. Как только частица dM приобретает скорость относительно точки M, ее воздействие на нее прекращается. Предположим далее, что изменение массы ракеты M происходит непрерывно, без скачков. (Это значит, что мы не рассматриваем многоступенчатые ракеты, масса которых меняется скачкообразно. ) Это предположение позволяет считать, что существует производная от массы по времени.
Пусть в момент t масса ракеты M, а ее скорость относительно неподвижной системы координат (рис. 5). Положим, за время dt от ракеты отделилась частица массы (-dM) со скоростью (относительно той же неподвижной системы координат ), равной .
Знак «минус» перед приращением массы указывает на то, что приращение это отрицательное, масса ракеты убывает.
Положим, равнодействующая внешних сил, действующих на ракету (силы тяжести и сопротивления среды), F. Как сказано выше, в момент отделения частицы массы (-dM) между ней и ракетой действует неизвестная нам реактивная сила . Сила для системы ракета – частица является внутренней. Чтобы исключить
Рис.5.К выводу уравнения движения тела переменной массы.
ее из смотрения, вспользуеамя законом изменения количества движения. Количество движения системы ракета – частица а момент t, т. е. перед отделением частицы:
Количество движения системы в момент (после отделения частицы) складывается из количества движения массы , получившей скорость , и количества движения массы частицы – dM, летящей со скоростью :
Изменение количества движения системы за время dt:
(мы отбросили член второго порядка малости ). Величина должна быть приравнена импульсу равнодействующей внешних сил:
Отсюда, перегруппировав члены и разделив на dt, получим основное уравнение движения точки переменной массы:
Это уравнение иначе называют уравнением Мещерского. Для ракеты , так как при полете масса ее убывает. Если масса тела во время движения увеличивается, то . При уравнение (1.22) переходит в уравнение второго закона Ньютона для случая постоянной массы. Величина есть скорость выбрасываемых ракетой частиц относительно системы координат, движущейся с ракетой. Эту скорость называют обычно просто относительной скоростью V. Тогда равенство (1.22) запишется в виде
Второй член правой части равенства (1.23) представляет собой реактивную силу, действующую на массу M со стороны вылетевшей частицы dM.
Для любого момента времени произведение массы тела на его ускорение равно векторной сумме равнодействующей приложенных к телу внешних сил и реактивной силы. При движении ракеты вблизи Земли равнодействующая внешних сил представляет собой сумму силы тяжести и силы сопротивления воздуха. Ускорение ракеты зависит еще и от реактивной силы, изменяя величину и направление которой можно управлять полетом ракеты.
Если относительная скорость отбрасываемых частиц равна нулю: ,то из формулы(1.22) следует: