Дипломная работа: Разработка динамической модели привода с фрикционным вариатором

Передаточное отношение определяем по формуле:

Крутящий момент Мn , передаваемый ведущим колесом


Для передачи заданной мощности, выраженной окружной силой необходимо обеспечить условие где — сила трения между катками.

Тогда

где β – коэффициент запаса сцепления колес, β=1,3.

Момент трения определяем по формуле:

3 Проектный расчет фрикционного вариатора

по контактным напряжениям

Определим диаметр d1 меньшего колеса из условия контактной прочности. Принимаем коэффициент запаса сцепления колес β=1,3; коэффициент трения по длине контактной линии f=0,3; допускаемое контактное напряжение (текстолит по стали) [σ]k = 70 Н/мм2 , модуль упругости для меньшего колеса (текстолит) Е1 =6х103 МПа, для большего колеса (сталь) Е2 = 2,15х105 МПа.

Приведенный модуль упругости Е по формуле:

Диапазон регулирования:

где .

При проектном расчете принимают

Конструктивно наибольший диаметр диска:

Геометрическое скольжение при ведущем колесе:

Остальные размеры колес принимают конструктивно.

4 Разработка динамической модели

4.1 Структурная схема объекта

Рассматриваемая система состоит из электродвигателя, который создает момент двигателя Мn , муфты, ведущего колеса, ведомого диска, подшипников качения и рабочего органа. Двигатель создает крутящий момент с угловой скоростью ω, который передается через муфту на ведущее колесо, с него на ведомый диск, затем на рабочий орган (рис. 3.1). Винтовое прижимное устройство обеспечивает передачу крутящего момента.

Рисунок 4.1 – Расчетная схема привода.

4.2 Анализ допущений, принимаемых при создании модели

Для создания модели принимаем электродвигатель, обеспечивающий постоянный крутящий момент, муфты с η =0,98, шариковые подшипники качения с η=0,99 и роликовые подшипники качения с η=0,97. Деформации колеса и диска не учитываются.

Рисунок 4.2 – Модель лобовой передачи

4.3 Динамическая модель

Модель имеет 4 степени свободы и движение тел, входящих в модель, описывается системой дифференциальных уравнений, на основании результатов решения которой получим динамические параметры привода. Система дифференциальных уравнений имеет вид [3]:

где Is , Ip – приведенные моменты инерции вращающихся деталей двигателя и рабочего органа;

I1 , I2 – приведенные моменты инерции колеса и диска соответственно;

φs , φp , φi – угловые координаты вращающихся масс;

Мn – момент движущих сил (двигателя);

Мо – момент сил сопротивления (рабочего органа);

с1 , с2 – жесткости валов;

k1 , k2 – коэффициенты демпфирования;

ε – геометрическое скольжение.

На основании дифференциальных уравнений, которые описывают поведение привода в процессе работы, была составлена его динамическая модель. Далее выполняем исследование составленной модели. Нагружаем модель единичным ступенчатым воздействием, которое воздействует на вал двигателя.

4.4 Определение инерционных характеристик подвижных

деталей и жесткости элементов привода

К-во Просмотров: 416
Бесплатно скачать Дипломная работа: Разработка динамической модели привода с фрикционным вариатором