Дипломная работа: Разработка математической модели и ПО для задач составления расписания
1, если в группе kr практическое занятие qkr проводит преподаватель p;
0 – в противном случае;
=
Учебная нагрузка преподавателей планируется до составления расписания занятий, вследствие чего на данном этапе величины и можно считать заданными. Для каждого преподавателя p, p = 1 ,…,P, задана также его аудиторная нагрузка - Np часов в неделю.
АУДИТОРНЫЙ ФОНД
Занятия каждого потока могут проводиться только в определенных аудиториях (например, практические занятия по информатике могут проводится только в дисплейных классах). Пусть:
{A1r} – множество аудиторий для лекций на потоке r;
{A2r} – множество аудиторий для практических занятий на потоке r;
A1r – число элементов множества {A1r};
A2r – число элементов множества {A2r};
A1r + A2r – число аудиторий объединения множеств {A1r}∩{A2r}.
Аудиторный фонд определяется до начала составления расписания, поэтому множества можно считать заданными.
2.1.2. ??????????Задача составления расписания заключается в определении для каждой лекции (на потоке) и практического занятия (в группе) дня недели и пары в этот день с учетом выполнения конструируемых ниже ограничений и минимизации некоторой целевой функции.
Введем следующие искомые булевы переменные:
|
|
=
В случае составления расписания для групп вечерней формы обучения J=2. Обобщение модели на все формы обучения см. [1], стр. 669.
2.1.3. ???????????Для каждой группы kr должны выполняться все виды аудиторной работы в течение недели:
|
В любой день t на каждой паре j для каждой группы kr может проводиться не более одного занятия:
|
Каждые лекция sr и практическое занятие qkr соответственно для всех потоков r и всех групп kr могут проводиться не более одного раза в любой день t: