Дипломная работа: Разработка технологии концентрирования серной кислоты
В разогретую колонну постепенно подают разбавленную азотную кислоту, доводя нагрузку агрегата до нормальной. Период пуска агрегата до установления полной нагрузки и нормального режима составляет до 10 часов. Такой длительный пусковой период обусловлен хрупкостью ферросилида и большой чувствительностью его к изменениям температуры.
При остановке агрегата прекращают подачу азотной кислоты и уменьшают подачу серной кислоты. Через полчаса прекращают ввод пара в колонну. За это время азотная кислота будет полностью удалена из колонны, после чего прекращают подачу серной кислоты.
4. Концентрирование серной кислоты.
Процесс концентрирования серной кислоты производят в аппаратах – концентраторах вихревого типа (БМСКХ). Концентрирование серной кислоты осуществляется в концентраторах вихревого типа, представляющий собой вихревую ферросилидовую колонну. Процесс концентрирования осуществляется топочными газами при температуре от 600 до 900ºС. Горячие газы подаются в первую ступень вихревой колонны концентрирования серной кислоты.
Вихревая колонна состоит из пяти рабочих ступеней и одной брызгоуловительной ступени. Первая по ходу газового потока ступень выполнена в виде цилиндрической емкости, футерованной изнутри кислотоупорным кирпичом. Горячий газовый поток, нагретый в топке, при температуре 900ºС подается в днище колонны (первую ступень по ходу газового потока ступень концентратора) тангенциально через футерованный канал. Воздух в топку нагнетается воздуходувкой, а расход его регулируется задвижкой.
Вторая, третья, четвертая, пятая рабочие, абсорбционные и брызгоуло-вительная ступени выполнены конструктивно одинаковыми и изготовленными из высоко - кремнистого чугуна – ферросилида марки ЧС – 15. Отработанная (70 % - ная) серная кислота при температуре от 150 ºС до 170 ºС из колонны денитрации (поз.1) по трубопроводу 6.1 подается на шестую ступень концентратора (вихревой колонны) (поз.13). Расход ее устанавливается по щелевому расходомеру.
Контактирование горячих газов /3/ и кислоты осуществляется в колонне в противоточном режиме. Топочные газы, поступающие в первую ступень концентратора, поднимаясь вверх со ступени на ступень, контактирует с кислотой и концентрируют ее на ступенях.
При этом газы насыщаются парами воды и освобождаются от брызг кислоты на брызгоуловительных ступенях. Далее отходящие газы поступают в эжектирующее устройство. В эжектирующем устройстве за счет подсоса холодного воздуха происходит снижение температуры отходящих газов. Далее отходящие газы поступают в аппарат – брызголовушку, где происходит отделение брызг и капель кислоты от газового потока.
Вода подается на верхнюю абсорбционную ступень в количестве 1,0 – 2,0 л / мин. Расход воды регулируется вентилем и устанавливается по ротаметру. Образующаяся при абсорбции слабая (50 – 60 %) серная кислота и уловленные брызги серной кислоты подаются на укрепление на первую ступень колонны. Температура отходящих газов после брызголовушки составляет 110 – 130 ºС. Далее отходящие газы поступают в эжектирующее устройство и трубу выброса газов. Эжектирующее устройство /2/ служит для охлаждения газов до 60 – 70 ºС. Образующийся при охлаждении газов конденсат направляется в колонну.
Отходящие газы при 40 – 60 ºС направляются через трубу выброса газа в атмосферу. Серная кислота перетекает со ступени на ступень вниз, концентрируется и в виде продукционной 91 % серной кислоты с выхода первой ступени поступает в холодильник. Из холодильника серная кислота перетекает в сборник готовой продукции. Режим работы концентратора /3/ представлен в таблице 3.1.
Таблица 2.4 - Режим работы концентратора серной кислоты
Наименование показателя | Норма |
1 | 2 |
Массовая доля регенерированной серной кислоты, %, не менее | 92 |
Температура топочных газов при входе в концентратор, ºС |
900 |
Давление природного газа, МПа | 0,1 |
1 | 2 |
Давление воздуха перед топкой, МПа | 0,008 – 0,013 |
Массовая доля отработанной серной кислоты, %, не более | 70 |
Температура отработанной серной кислоты, ºС | 160 – 180 |
Температура низа колонны, ºС | 180 – 200 |
Температура верха колонны, ºС | 150 – 165 |
При нагревании водных растворов серной кислоты составы паровой и жидкой фаз неодинаковые – паровая фаза содержит больше воды, чем жидкая. При нагревании водных растворов серной кислоты, и, следовательно, массовая доля серной кислоты в растворе повышается.
С повышением массовой доли серной кислоты разность между количеством жидкой и паровой фаз уменьшается (рис. 2.3).
Так, например, если в парах над серной кислотой с массовой долей 80 % содержатся только следы серной кислоты, то над серной кислотой с массовой долей 90 % в парах ее содержится примерно 10 %, а над серной кислотой с массовой долей 98,3 % состав паровой и жидкой фаз неодинаков. Это хорошо видно на диаграмме кипения водных растворов серной кислоты при 0,098 МПа.
С повышением массовой доли растворов /1/ серной кислоты температура ее кипения повышается. Кривая температур кипения растворов серной кислоты имеет экстремум, где обе кривые, определяющие состав жидкой и паровой фаз, сливаются, следовательно, состав их одинаков. Состав газовой фазы над 98,3 % - ной серной кислотой (т. е. моногидратом и олеумом) также отличается от жидкой фазы, в газовой фазе содержится больше серной кислоты или сернистого ангидрида, чем в жидкой.
При упаривании концентрированной серной кислоты и олеума при достижении 98,3 % - ной серной кислоты содержание серной кислоты в растворе остается постоянным
Вследствие образования азеотропной смеси теоретически массовая доля серной кислоты может быть повышена простым выпариванием до 98,3 % - ной практически же ее доводят не более, чем до 96 %.
Рисунок 2.3 – Диаграмма состава пара над жидкой серной кислотой при
температуре кипения и давлении 1атм (0,098 МПа)
При концентрировании серной кислоты протекают 2 основных процесса: испарение воды и передача теплоты.
В данном производстве используется установка с непосредственным обогревом кислоты. В концентраторе вихревого типа с соприкосновением горючих топочных газов и кислоты обеспечивается высокая интенсивность процессов массо – и теплопередачи.
Однако недостатком этого метода является туманообразование /4/ серной кислоты и разложение ее по формуле: