Дипломная работа: Развитие мотивационной составляющей учебной математической деятельности школьников
МК4. Мотивы личного самоутверждения.
МК5. Мотивы эмоционального удовольствия.
МК6. Мотивы социального самоутверждения.
МК7. Социально-эмоциональные мотивы.
МК8. Социально-моральные мотивы.
МК9. Гражданско-патриотические мотивы.
Глава 2. МЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ МОТИВАЦИИ УЧЕНИЯ МАТЕМАТИКЕ
2.1. Мотивация и природа математических знаний
Применить успешно метод мотивации в учебном процессе невозможно без знания природы математических понятий и теорий. Ответить на вопрос «Что такое математика?» так же трудно, как, согласно словам Кузьмы Пруткова, постараться «объять необъятное». Термин «математика» происходит от греческого слова «µбиемб», что означает знания, наука. Это слово происходит от глагола мaхибхщ, что означает учить при помощи суждений и здравого смысла.
Поскольку стадия формальных операций соответствует возрасту 11 лет, а дети начинают учиться с 6 – 7 лет, имеются определённые трудности в формировании внутренней мотивации учения математики. К счастью, школьный курс математики оперирует только конкретными «пространственными формами» и «количественными отношениями». Эти факты позволяют оперировать понятиями числа и фигуры на более ранней стадии развития. Следует отметить, что школьные учебники не содержат какой-либо информации о существовании многих областей математики. Но отдельные способные учащиеся представляют школьную математику как всю математику и стремятся стать специалистами в других областях знаний.
2.2. Роль задач с практическим применением в развитии предметной мотивации
Ответ на вопрос «Как возбудить интерес к математике?» неоднозначен. Всё зависит от интересов индивидуума. Очевидно, необходимо проанализировать личностные механизмы, активизирующие и регулирующие мотивационную роль практики к учебной дисциплине.
Можно выделить ряд стадий усвоения учебного материала:
1) база понимания формируется на основе наблюдения и эксперимента, выполняет стимулирующую функцию;
2) теоретический уровень достигается в ходе осмысления всей системы эмпирических предпонятий и взаимосвязей между ними;
3) активизация стремления учащихся к применению теоретических сведений на практике формируется, когда понятие и способы деятельности получают некоторые конкретные, содержательные интерпретации.
Реализация данной схемы происходит на протяжении всего процесса обучения математике в школе. Тем не менее, она предусматривает доминирование различных мотивационных факторов в зависимости от возрастного диапазона.
На первой стадии изучение математики представляет собой процесс эмпирического познания, где главная роль принадлежит наблюдению и эксперименту (вычисление, измерение, конструирование и т.д.). Здесь основной мотивационный фактор – это стремление связать усваиваемый материал с собственным практическим опытом. Принцип связи теории с практикой требует гармоничной связи научных знаний с практикой. Важность этого принципа объясняется тем, что практика является отправной точкой процесса познания и критерием истины. В процессе преподавания математики связь с практикой обеспечивается при помощи лабораторных работ или решения упражнений и задач. Практика доказывает необходимость полученных знаний и этим повышает мотивационный уровень учения математики. Любую задачу можно ориентировать на повышение творческих способностей и повышение мотивации учения математики.
Поэтому на следующем этапе, хотя роль практики перестаёт быть доминирующей, тем не менее, она остаётся важным средством мотивировки рассмотрения того или иного фрагмента содержания и возбуждения первоначального интереса к нему. Здесь математический факт является результатом решения чисто математической задачи.
На следующем этапе мотивационная роль практики выражается в реализации её мировоззренческой функции. Н. А. Терёшин указывает, что такая реализация возможна через показ применения изучаемого математического материала смежных курсов и других школьных дисциплин, рассмотрение истории возникновения и эволюции математических понятий и методов, знакомство с элементами математического моделирования реальных состояний и процессов, лежащих в основе овладения прикладной математической идеологией [16, с.3]. При этом осознание роли математических знаний, как важнейшего компонента человеческой культуры, становится одним из ведущих мотивационных факторов, которые обеспечивают осознанное стремление учащихся к применению усвоенного материала в смежных предметах и реальной жизненной практике.
Текстовые задачи являются основным средством демонстрации п?