Дипломная работа: Рентгеноструктурний аналіз молибдену

(14)

Якщо ж N флуктує навколо середнього значення <N>, то

(15)

Її об'єм достатньо великий, щоб містити велике число атомів. При цьому передбачається, що атоми, розташовані поблизу поверхні сфери, мають те ж оточення, що і атоми, що знаходяться в її центрі. Співвідношення (14) і (15) визначають умови нормування функції атомної густини ρ(R) перша умова є точною для кристала, друга — для рідини. Зіставляючи функції (11) і (14), знаходимо

(16)

де ρат — середнє число атомів в одиниці об'єму. Згідно цьому співвідношенню значення W(R) рівні відношенню істинної кількості атомів в одиниці об'єму до середньої атомної густини. Тому W(R) має сенс відносної радіальній функції розподілу. Функція W(R) є найважливішою і основною характеристикою структури атомарних рідин і аморфних тіл.

Гази. Припустимо, що атоми — непроникні кульки. Тоді можна стверджувати, що вірогідність зближення двох атомів на відстань R<2r рівна нулю (мал. 1.3,а). Якщо густина газу дуже мала, то за межами сфери радіусу R = 2r розташування атомів по відношенню до фіксованого буде рівноімовірним (хаотичним). Число атомів в одиниці об'єму на цій відстані рівне середньому значенню ρат а функція W(R)= 1. Якщо ж газ достатньо щільний, то при R = 2r функція W(R) має максимум, при R<2r вона прагне до нуля, а при R>2r— до одиниці (мал. 1.3,6).

Кристали. У ідеальному кристалі за відсутності теплового руху атоми розташовані на фіксованих відстанях один від одного. Так, в кубічній гранецентрированій гратці 12 атомів знаходяться на відстані 2r, 6 — на відстані 2r(2)1/2 , 24 — на відстані 2r(3)1/2 12 — на відстані 4r і т.д. Вірогідність знаходження атома в проміжках між вказаними відстанями рівна нулю. Якщо уявити собі, що такий кристал обертається навколо одного з атомів, то центри інших атомів розташовуватимуться на сферах цих радіусів і жоден з них не виявиться між сферами. Радіальна функція W(R) має дискретний характер. Якщо зберегти за нею умову нормування (11), то розподіл атомів на відповідних сферах можна представити у вигляді:

(17)

де δ(R—Rk )дельта-функція Дірака, числове значення якої визначають умовою0 при R ≠ Rk

δ(R—Rk)= { (18)

∞ при R = Rk

Тепловий рух змінює розміщення атомів в кристалі, їх центри декілька відхиляються від середнього положення рівноваги. Тому вертикальні лінії (мал. 1.3, в) слід замінити піками гаусової форми з напівшириною ∆R = (kT/β)1/2 де β — коефіцієнт квазіпружної сили.

Рідини. Амплітуда теплових коливань атомів біля положень рівноваги в рідині набагато більше, ніж в кристалах. До того ж атоми рідини, беручи участь в тепловому русі, безперервно обмінюються своїми найближчими сусідами. Якщо в думках прослідити за рухом якого-небудь атома в рідині, то можна переконатися, що за час спостереження він знаходитиметься на самих різних відстанях від фіксованого атома. Внаслідок цього функція W(R) буде безперервною. У інтервалі 2r<R<R0 вона осцилює щодо одиниці з амплітудою, що постійно зменшується. Максимуми цих осциляції відповідають вірогіднішим міжатомним відстаням, мінімуми — відстаням, на яких атоми знаходяться порівняно рідко. Послідовність максимумів W(R) відповідає послідовності рівноважних міжатомних відстаней в рідині і тому визначає ту впорядкованість на близьких відстанях, яка характеризує розташування атомів в речовині. При збільшенні відстані розташування атомів по відношенню до фіксованого рівноімовірне, причому функція W(R)→1, коли R>>r.

Функція W(R) є типовою для рідин з щільною упаковкою атомів (мал. 1.3,г). Якщо розташування атомів характеризується менш щільною упаковкою (вісмут, германій, сурма), то відповідна функція розподілу зображається кривою декілька іншого вигляду.

Зіставлення функцій W(R) для рідини і кристала показує, що у разі кристала максимуми цієї функції розділені проміжками, де, W(R)= 0, тоді як в рідині навіть перший пік не дозволений. Нерозв'язність піків радіальної функції зв'язана, очевидно, з розкидом рівноважних положень атомів і їх рухом трансляції. Якщо функція W(R) відома, то тим самим відомий і характер взаємного розташування частинок. Тому основною характеристикою молекулярної структури рідин є радіальна функція розподілу. Знаходження цієї функції для тієї або іншої рідини є найважливішою задачею структурного аналізу. Кількісними параметрами структури є координаційні числа, рівноважні міжатомні відстані, середні квадратичні зсуви атомів, а також відстань, на якому зникає кореляція в розташуванні частинок. Характеристиками структури рідин є також флуктуації концентрацій, густини і орієнтації молекул.

Дж. Кірквуд знайшов явний вид функції W(R) теоретично, виходячи із загальних принципів статистичної механіки. Імітуючи атоми твердими взаємодіючими кульками, він одержав формулу:

(19)


де A, α, β, і δ— постійні параметри. Наприклад, для аргону А = 9,51 Å; α= 0,30 Å -1 ; σ =2,12 Å -1 ; δ = —2,25. Функція W(R) обчислена по цій формулі, володіє такою ж залежністю від R як і експериментально визначувані функції розподілу для одноатомних щільно упакованих рідин.

Особливості розсіювання рентгенівського випромінювання, електронів і нейтронів

Рентгенографічні, електронографічні і нейтронографічні дослідження атомної і молекулярної структур рідин і аморфних тіл ґрунтуються на аналізі кутового розподілу інтенсивності розсіяного рентгенівського випромінювання, електронів і нейтронів. Розсіювання речовиною цих трьох видів випромінювань не однакове, що пояснюється відмінністю їх фізичної природи. Рентгенівське випромінювання розсівається електронами атомів і молекул. Процес розсіювання не характерний звичному віддзеркаленню або заломленню. Рентгенівське випромінювання, взаємодіючи з електронами, приводить їх в коливальний рух. Коливаючись з тією ж частотою, що і електричний вектор первинної електромагнітної хвилі, електрони породжують вторинне електромагнітне випромінювання, що розповсюджується на всіх напрямках. Інтенсивність розсіяного випромінювання, що фіксується в деякій точці, пропорційна електронній густині атомів і молекул.

Пучок прискорених електронів, що направляється на досліджувану речовину, розсівається електричним полем ядер і електронних оболонок атомів. Інтенсивність розсіювання електронів пропорційна електростатичному потенціалу атомів.

Нейтрони розсіваються ядрами атомів. При цьому пружне розсіювання повільних нейтронів використовується для вивчення атомної будови речовини, а непружне — для вивчення динаміки атомів і молекул.

Відмінність у взаємодії рентгенівського випромінювання електронів і нейтронів з речовиною враховується при розрахунку атомних амплітуд розсіювання, що є основними характеристиками розсіюючої здатності речовини. При розгляді ж розсіювання сукупністю зв'язаних атомів, іонів або молекул речовини механізм розсіювання не зачіпається. Беруть до уваги лише довжину хвилі використовуваного випромінювання, просторову конфігурацію частинок і відстань між ними.

Розсіювання рентгенівського випромінювання вільним електроном

Припустимо, що на вільний електрон направлений пучок паралельних монохроматичних рентгенівських променів, інтенсивність яких I0 .Електрон під дією вектора електромагнітної хвилі здійснює коливання, випромінюючи вторинні хвилі. Кутовий розподіл інтенсивності цих хвиль залежить від стану поляризації первинного рентгенівського випромінювання. Якщо вони поляризовані, то інтенсивність розсіювання одним електроном, що фіксується в точці на відстані L від електрона, виражається формулою

(20)

де m — маса електрона; e — його заряд; c— швидкість світла; φ— кут між напрямами коливання електрона і розсіюванням; e2 /(mc2 )— класичний радіус електрона, рівний 2,8•10-15 м; [e2 /(mc2 )]2— його поперечник розсіювання. З (20) видно, що із збільшенням кута φ інтенсивність розсіювання збільшується, досягаючи найбільшого значення при φ = 90° (мал. 2.1).

Якщо первинний пучок рентгенівського випромінювання неполяризований, то формула для інтенсивності розсіювання одним електроном набуває вигляду

(21)

К-во Просмотров: 247
Бесплатно скачать Дипломная работа: Рентгеноструктурний аналіз молибдену