Дипломная работа: Технология извлечения знаний из нейронных сетей: апробация, проектирование ПО, использование в психолингвистике
1. Анализ разработанных методов извлечения явных знаний из нейронных сетей с указанием их ограничений и областей применимости.
2. Апробация гибкой настраиваемой на основе предпочтений пользователя технологии извлечения знаний, опирающейся на предварительное проведение комплексного упрощения нейронной сети, выполняющегося с учетом сформированных пользователем требований к результирующему виду извлекаемых знаний.
3. Тестирование, пробная эксплуатация и разработка новой версии программных средств, реализующих данную технологию.
4. Усовершенствование метода семантического дифференциала Осгуда при помощи технологии разреживания обучаемых нейронных сетей.
Основные результаты работы, полученные лично автором
1. Предложены следующие приемы, упрощающие и делающие более гибким процесс вербализации (семантического анализа – осмысления в терминах проблемной области) извлеченного из сети набора правил:
a) На основе гипотезы о неединственности извлекаемых правил и учитывая, что разные фрагменты сети (поднаборы правил) будут более или менее правдоподобны и интерпретируемы, предложено конструирование новой, более понятной пользователю нейронной сети из наиболее просто интерпретируемых фрагментов других сетей, решающих ту же задачу.
b) Предложено добавление выходного сигнала некоторого фрагмента сети (содержательно интерпретируемого и правдоподобного с точки зрения пользователя) в качестве нового интегрального признака в число независимых признаков таблицы данных, и решение задачи извлечения знаний на основе полученного расширенного набора признаков.
2. Разработано техническое задание на новую версию программы-нейроимитатора, реализующую предложенные технологии.
3. Усовершенствован метод семантического дифференциала Осгуда при помощи технологии разреживания обучаемых нейронных сетей. Проведена серия экспериментов, заключающихся в исследовании индивидуальных смысловых пространств, проинтерпретированы их результаты. Предложена гипотеза о структуре индивидуального пространства смыслов: оно состоит из многообразия малой размерности, задаваемого культурой («ман-многообразия» от немецкого безличного местоимения «man») и сравнительно небольшого множества индивидуальных отклонений, которые могут быть важны для диагностики. Каждая культура имеет небольшое количество специфических для нее ман -многообразий (субкультур).
Апробация работы
Основные положения работы докладывались на VI, VII Всероссийских семинарах "Нейроинформатика и ее приложения", (Красноярск, 1998, 2000 гг), I, Всероссийской научно-технической конференции "Нейроинформатика" (Москва, МИФИ, 1999 г.), VI Международной конференции "Математика. Компьютер. Образование" (1999г, Пущино), InternationalJointConferenceonNeuralNetworks (1999г, Washington, DC, USA), XXXVII Международной научной студенческой конференции "Cтудент и научно-технический прогресс": Информационные технологии. Новосибирск, НГУ, 1999 (награждена Дипломом 3 степени).
Публикации
По теме диплома автором опубликована 1 статья в научном журнале и 4 тезиса докладов.
Глава 1. Проблема извлечения знаний и обзор методов извлечения знаний
Введение
Первый параграф определяет понятия "знание" и "приобретение знания".
Второй параграф посвящен обзору существующих методов извлечения и приобретения знаний. Рассматриваются существующие в теории классических экспертных систем методы приобретения знаний, рассматриваются использующиеся для извлечения знаний из таблиц данных методы статистического анализа, математического моделирования и идентификации.
Третий параграф описывает набор требований к направленной на конечного пользователя технологии извлечения знаний.
1.1 Знание и приобретение знаний
1.1.1 "Знание"
Под знанием понимается достаточно широкий спектр информации. В [1,с.430-432] представлена следующая классификация типов знаний:
1. Базовые элементы знания (информация о свойствах объектов реального мира). Связаны с непосредственным восприятием, не требуют обсуждения и используются в том виде, в котором получены.
2. Утверждения и определения. Основаны на базовых элементах и заранее рассматриваются как достоверные.
3. Концепции – перегруппировки или обобщения базовых элементов. Для построения каждой концепции используются свои приемы (примеры, контрпримеры, частные случаи, более общие случаи, аналогии).
4. Отношения. Выражают как элементарные свойства базовых элементов, так и отношения между концепциями. К свойствам отношений относят их большие или меньшие правдоподобие и связь с данной ситуацией.
5. Теоремы и правила перезаписи – частный случай продукционных правил (правил вида "если…, то…, иначе…") с вполне определенными свойствами. Теоремы не представляют пользы без экспертных правил их применения.
6. Алгоритмы решения. Необходимы для выполнения определенных задач. Во всех случаях они связаны со знанием особого типа, поскольку определяемая ими последовательность действий оказывается оформленной в строго определенном порядке, в отличие от других типов знаний, где элементы знания могут появляться и располагаться без связи друг с другом.
7. Стратегии и эвристика. Врожденные или приобретенные правила поведения, которые позволяют в конкретной ситуации принять решение о необходимых действиях. Человек постоянно пользуется этим типом знаний при формировании концепций, решении задач и формальных рассуждениях.
8. Метазнание. Присутствует на многих уровнях и представляет знание того, что известно, определяет значение коэффициента доверия к этому знанию, важность элементарной операции по отношению ко всему множеству знаний. Сюда же относятся вопросы организации разного типа знаний и указания, где, когда и как они могут быть использованы.
В настоящей работе первому типу знаний будет соответствовать информация об измеримых (или наблюдаемых) свойствах объектов реального мира. Именно эта информация сведена в таблицу данных типа "объект-признак". Остальным типам знаний соответствуют ограничения на диапазоны значений, которые могут принимать признаки объекта (второй тип), информация о взаимозависимости признаков и о возможности описания одних признаков через другие, информация о статистических свойствах значений признаков,… Фактически, нас интересует знание второго и последующих типов – знание, которое человек добывает в процессе анализа информации, рассуждений, обобщений, проведения аналогий.
Естественным является требование представления знаний в виде, допускающем "тиражирование" – возможность передачи знаний другим людям. Для первого типа знаний возможно получение как объективных (точно измеренных) значений свойств объектов реального мира, так и субъективных, персонализированных, чувственных оценок значений этих свойств. Для знаний последующих типов для возможности передачи вводятся требования объективизации, достоверности, непротиворечивости [1].
Информационные единицы (знания) обладают гибкой структурой [2]. Для них выполняется "принцип матрешки" – рекурсивная вложенность одних информационных единиц в другие (это наблюдается и на примере вышеприведенной классификации из [1]).
Каждая информационная единица может быть включена в состав любой другой, и из каждой информационной единицы можно выделить некоторые составляющие ее единицы. Т.е. между отдельными информационными единицами возможно установление отношений типа "часть – целое", "род – вид" или "элемент – клас с".
Для информационных единиц одного уровня иерархии семантика отношений может носить декларативный или процедурный характер [2]: две или более информационных единицы могут быть связаны декларативными отношениями "одновременно", "причина – следствие" или "быть рядом" , либо процедурными отношениями типа "аргумент – функция".