Дипломная работа: Тесты в технологии блочного обучения математике учащихся полной средней школы

Польша

Латвия

Италия

Португалия

Греция

Люксембург

Мексика

Бразилия

Анализ результатов исследования позволил сделать следующие выводы.

1. Математическая подготовка 15-летних учащихся в основном позволяет им выполнять задания международного теста. В российской основной школе изучаются математические факты и математические методы, необходимые для решения большинства задач, включенных в международные тесты. Некоторые необходимые сведения о пространственных фигурах, возрастных диаграммах населения и графиках кусочных функций учащиеся получают в Х‑ХIклассах.

2. Невысокие результаты российских учащихся в международных тестированиях объясняются несколькими причинами.

Почти все задачи были предложены в нестандартной для российских ребят формулировке, она значительно отличалась от формулировки учебных заданий, типичных для большинства действующих учебников. А именно, в заданиях международных тестов достаточно многословно описывалась некоторая близкая к реальной ситуация, которая могла включать факты и данные, не являющиеся необходимыми для решения поставленной проблемы. В ряде случаев задача была сформулирована таким образом, что учащиеся не могли отнести ее к какому-либо определенному разделу курса математики, чтобы для ее решения воспользоваться соответствующими теоретическими фактами. Не удивительно, что значительная часть ребят затруднилась составить математическую модель предлагаемой ситуации.

Некоторые задачи требовали либо приближенных методов решения, использование которых не практикуется в российской школе, либо выполнения только простейших вычислений, что зачастую смущало российских 15-летних школьников, которые привыкли к использованию более сложных математических методов. Российские ребята оказались к этому не готовы.

В некоторых случаях требовалось с учетом содержания задания интерпретировать полученное решение и отобрать ответ, отвечающий условию задачи. Невысокие результаты выполнения таких заданий в ряде случаев объясняются отсутствием у учащихся привычки к самоконтролю. В российской школе не обращается особого внимания на анализ полученного ответа при решении учебных заданий, так как в большинстве случаев этого не требуется в условиях искусственной учебной ситуации.

Для успешного выполнения заданий, предложенных в исследовании, а, следовательно, и для успешности во взрослой жизни очень важна установка на обязательное достижение цели — решение поставленной задачи любыми доступными средствами. Например, при отсутствии знания точного математического метода и соответствующих математических терминов использовать приближенный метод «проб и ошибок» и повседневную лексику. К сожалению, российские учащиеся такой установки не имеют, так как она не считается приемлемой при обучении математике в российской школе.

3. В проведенном исследовании можно выделить относительно небольшой перечень знаний и умений, которые на международном уровне посчитали необходимыми для современного математически грамотного человека. К ним, например, относятся: пространственные представления; умение читать и интерпретировать количественную информацию, представленную в различной форме; работа с формулами; знаковые и числовые последовательности; нахождение периметра и площадей нестандартных фигур; выполнение действий с процентами и др. К сожалению, формированию этих практически ориентированных знаний и умений в российской школе не уделяется должного внимания. Эти же знания и умения проверялись у учащихся XI класса в рамках другого международного исследования (TIMSS) в 1995 г. Результаты российских выпускников старшей школы были подобны результатам, показанным 15-летними учащимися в рамках исследования PISA в 2000 г. [12].

Сравнение результатов России с другими странами явно показывает отличие приоритетов российского математического образования от других стран. Результаты международных сравнительных исследований TIMSS 1995 и 1999 гг. свидетельствуют, что уровень предметных математических знаний и умений российских школьников не ниже или превосходит уровень знаний и умений учащихся большинства стран (Новая Зеландия, Финляндия, Австралия, Канала, Швейцария, Великобритания, Франция, Австрия, Дания, Исландия, Лихтенштейн, Швеция, Ирландия, Норвегия), которые в исследовании РISA-2000 показали существенно лучшие результаты уровня математической грамотности. Это говорит о том, что обеспечивая учащихся значительным багажом знаний, российская система обучения математике не формирует у них умения выходить за пределы учебных ситуаций [12].

Невысокие результаты сравнительных международных исследований показали, что давно поставленная перед российской школой цель подготовить выпускников к свободному использованию математики в повседневной жизни в значительной степени не достигается на уровне требований международных тестов, проверяющих математическую грамотность. Одна из причин этого явления - академическая направленность школьного курса математики, которая привела к отсутствию должного внимания к практической составляющей содержания обучения в основной школе. Эта позиция отразилась и в содержании итоговой аттестации выпускников основной школы, которая проводится только по курсу алгебры VII—IX классов. Вследствие этого, практическая направленность не реализуется в действующих учебниках для основной и средней школы, а также в проверочных и экзаменационных работах по курсам основной и средней школы.

Однако следует иметь в виду, что усвоения практических знаний явно недостаточно для приобретения математической компетентности, так как эти знания составляют только ее часть, а компетентность включает еще и умение применить свои знания в ситуациях, отличных от тех, в рамках которых они были получены. К сожалению, многие российские школьники не смогли выйти за пределы привычных для них учебных ситуаций и применить свои немалые знания для решения многих далеко не сложных задач, включенных в международные тесты. Как показывают исследования в области школьного образования, для приобретения этого умения необходима соответствующая методика обучения и методики контроля знаний.

В 2003 г. был завершен второй этап исследования PISA, в котором приоритетным направлением было исследование математической грамотности. К сожалению, и в этот раз российские учащиеся показали такие же невысокие результаты [12].

Невысокие результаты показали российские школьники и на международной олимпиаде по математике [3].

Проанализировав вышесказанное, можно сделать следующие выводы: одной из причин низкого уровня, показываемого российскими школьниками, является недостаточно развитая система контроля качества обучения математике, односторонность и отдаленность от реальной действительности контролирующих заданий.

Для оценки качества нам необходимо знать, что подразумевает под собой само качество обучения. Для этого мы выделяем два основных аспекта: качество учебного процесса и качество подготовки выпускников.

Учебный процесс - это сложное динамическое образование, имеющее огромное количество связей и зависимостей между компонентами: содержанием и образовательной программой, содержанием учебного предмета и учебным планом, расписанием, деятельностью учителей и учащихся, и др.[18].

Под качеством учебного процесса мы будем понимать степень соответствия реализуемого в школе учебного процесса некоторым нормам (государственным, региональным, принятым на уровне образовательного учреждения как замысел).

Проанализировать качество учебного процесса – это значит соотнести действительное с желаемым; установить удовлетворенность учащихся, родителей, отдельных учителей, администрации и в целом всего педагогического коллектива, внешних экспертов некоторыми составными элементами или всем учебным процессом [15, 7].

Качество учебного процесса - явление настолько многогранное и сложное, что проанализировать и оценить все его стороны, связи не представляется возможным.

Поэтому при анализе компонентов учебного процесса и показателей его качества рекомендуется опираться на принцип главного звена: выбирать оценочные показатели с точки зрения их важности для данного образовательное учреждение (ОУ) в данный период его развития. При этом необходимо так же учитывать имеющуюся возможность измерить эти показатели. Главное звено характеризуется тем, что в цепи всех других задач оно должно решаться первым, ибо без его решения никакие другие задачи качественно выполнены быть не могут [16].

При этом могут быть использованы следующие оценки: “удовлетворяет требованиям”, “удовлетворяет требованиям в основном”, “не удовлетворяет требованиям”.

К-во Просмотров: 164
Бесплатно скачать Дипломная работа: Тесты в технологии блочного обучения математике учащихся полной средней школы