Дипломная работа: The manager as a teacher: selected aspects of stimulation of scientsfsc thinking

Selected aspects of stimulation of scientific thinking

As is generally known, science and education are one ofstrategic resources of the state, one of fundamental forms of culture of civilization, as well as competitive advantage of every individual. Global discoveries of modern life occur both deep in and at the junction of various sciences, and at that, often and often the more unusual the combination of sciences is, the wider range of scientific prospects is promised by non-standard conspectus of their combination, for example, biology and electronics, philology and mathematics, etc. Discoveries in one area stimulate development in other spheres of science as well. Scientific development of a society is a programmable and predictable phenomenon, and this issue is specifically dealt by the futurology science. Modern techniques of pedagogy, psychology, medicine and other sciences do not only enable orientation and informational “pumping” of human brain, but also the formation of an individual’s character optimally suitable for the role of scientist. Unlike a computer, any human being has intuition - the element of thinking so far in no way replaceable (although some developments in this sphere are coming into being). Narrow specialization of scientists tapers the scope of their activity and is explained by an immense volume of information required for modern scientist. This problem is being solved (partially though) through a variety of actions – intellectualization of computers, “simplification” of information (its reduction to short, but data intensive/high-capacity formulas and formulations), application of psycho-technologies. Psycho-technologies (mnemonics, educational games, hypnopaedia, (auto-) hypnosis, propaganda and advertising methods and techniques, including technotronic and pharmacological /nootropic preparations/, etc.) make it possible to solve the following problem. A “black box” concept applied in computer science designates a system into which the chaotic information is entered, and in a little while a version, hypothesis or theory is produced. A human being represents (with some reservations though) such a system. Information processing occurs consciously and subconsciously based on certain rules (program). The more information processing rules we enter, the fewer number of degrees of freedom remains in the system. Hence, it is desirable to enter the very basic axioms. Differences in programs (even mere default - but without lack of key information) form differences in opinions and argumentation. The longer the period of program operation is (including based on internal biological clock), the greater the effect one can expect. The provability of success is directly proportional to the quantity of samples/tests, hence it is desirable to build in basic mechanisms of scientific thinking at the earliest age possible in a maximum wide audience and to stimulate their active work, and in certain time intervals make evaluation and update of “programs” of thinking. “Comprehension by an individual of new skills occurs only step-wise. Transition between two following mental conditions takes place: “I’ll never understand how this can be done and I’ll never be able to do it” and “it is so obvious that I can’t understand what needs to be explained here”. Except for early childhood, the leaps of this kind occur when masteringreading and mastering writing, mastering all standard extensions of set of numbers (fractional, negative, rational numbers, but not complex numbers), when mastering the concept of infinitesimal valueand its consequences (the limits), differentiation, when mastering integration, complex of specific abilities forming the phenomenon of information generating (in other words, in the course of transition from studying science or art to purposeful/conscious professional creative work). We hereby note that at any of these stages, for the reasons not quite clear to us, the leap may not occur. It means that certain ability has not turned into a stage of subconscious professional application and cannot be used randomly by an individual for the solution of problems he/she faces. At that, the required algorithm may be well known. In other words, an individual knows letters. He/she knows how to write them. He/she can form words from them. He/she can write a sentence. But! This work would require all his/her intellectual and mainly physical effort. For the reason that all resources of the brain are spent for the process of writing, errors are inevitable. It is obvious that despite formal literacy (the presence of knowledge of algorithm) an individual cannot be engaged in any activity for which the ability to write is one of the basic or at least essential skills. Similar state of an individual is widely known in modern pedagogy and is called functional illiteracy. Similarly, one can speak of functional inability to integrate (quite a frequent reason for the exclusion of the 1st and 2nd grade students from physical and mathematical departments). Curiously enough, at higher levels the leap does not occur so often, to the extent that it is even considered normal. The formula: “An excellent student, but failed to make proper choice of vocation. Well, he’s not a physicist by virtue of thinking – well, that’s the way” (the leap allowing to mechanically employ specific style of thinking / physical in this case / did not occur). As to automatic creativity, these concepts in general are considered disconnected, and individuals for whom the process of creation of new essentialities in science and culture is the ordinary professional work not demanding special strain of effort are named geniuses. However, a child sick with functional illiteracy would perceive his peer who has mastered writing to the extent of being able of doing it without looking into a writing-book, a genius, too! Thus, we arrive at the conclusion that creativity at the level of simple genius isbasically accessible to everyone. Modern education translates to pupils’ knowledge (of which, according to research, 90 % is being well and almost immediately forgotten) and very limited number of skills which would in a step-wise manner move the individual to the following stage of intellectual or physical development. One should know right well that endless school classes and home work, exhausting sports trainings are no more than eternal “throwing of cube” in the hope that lucky number will come out – in the hope of a “click”. And the “click” may occur at the first dash. It may never occur as well. Accordingly, the philosophy “repetition is the mother of learning” in effect adds up to a “trial-and-error method” which has been for a long time and fairly branded as such by TRIZists (the followers of Inventive Problems Solution Theory). As a matter of fact, the uneven nature of transition between “in”-and “out”- states at the moment of “click” suggests that it is a question of structural transformation of mentality. That is, “click” requires destruction of a structure (a pattern of thought, a picture of the world) and creation of another one in which a new skill is included “hardwarily” to be used automatically. Restrictions stimulate internal activity. It is proven that creative task “Draw something” without setting pre-determined conditions with restrictions is carried out less productively and less originally than the task: “Draw an unusual animal with a pencil during 30 minutes” (Sergey Pereslegin). Required personal qualities – traits of character /temperamental attributes/ may be divided into four conventional groups: necessary, desirable, undesirable and inadmissible. Knowledge can be divided into two groups: means and ways of information processing (including philosophy, logic, mathematics, etc.), the so-called meta-skills or meta-knowledge/ which are universal and applicable in any field of activity), and the subject (subjects) matter per se. From the view point of methodology all methods of scientific knowledge can be dividedinto five basic groups: 1. Philosophical methods. These include dialectics and metaphysics. 2. General scientific (general logical) approaches and research methods - analysis and synthesis, induction and deduction, abstraction, generalization, idealization, analogy, modeling, stochastic-statistical methods, systemic approach, etc. 3. Special-scientific methods: totality of techniques, research methods used in one or anotherfield of knowledge. 4. Disciplinary methods, i.e. a set of methods applied in one or anotherdiscipline. 5. Methods of interdisciplinary research – a set of several synthetic, integrative methods generated mainly at the cross-disciplinary junction of branches of science. Scientific cognition is characterized by two levels - empirical and theoretical. Characteristic feature of empirical knowledge is the fact fixing activity.Theoretical cognition is substantial cognition /knowledge per se/ which occurs at the level of high order abstraction. There two ways to attempt to solve a problem: search for the necessary information or investigate it independently by means of observation, experiments and theoreticalthinking. Observation and experiment are the most important methodsof researchin the process of scientific cognition. It is often said that theory is generalization of practice, experience or observations. Scientific generalizations often imply the use of a number of speciallogical methods: 1) Universalization /globbing/ method which consists in that general points/aspects/ and properties observed in the limited set of experiments hold true for all possible cases; 2)Idealization method consisting in thatconditions are specified at which processes described in laws occur in their pure form, i.e. the way they cannot occurin reality; 3) Conceptualization method consisting in that concepts borrowed from other theoriesare entered into the formulation of laws, these concepts acquiring acceptably /accurate/ exact meaning and significance. Major methods of scientific cognition are: 1) Method of ascending from abstract to concrete. The process of scientific cognition is always connected with transition from extremely simple concepts to more difficult concrete ones. 2) Method of modeling and principle of system. It consists in that the object inaccessible to directresearchis replaced with its model. A model possesses similarity with the object in terms of its properties that are of interest for the researcher. 3) Experiment and observation. In the course of experiment the observer would isolate artificially a number of characteristicsof the investigatedsystem and examine their dependence on other parameters. It is necessary to take into account that about 10 - 25 % of scientific information is proven outdated annually and in the near future this figure can reach 70%; according to other sources, the volume of information doubles every 5 years. It means that the system of education/teaching and “non-stop” retraining applied in some cases will become a universal and mandatory phenomenon, whereas the boundary between necessary and desirable knowledge will become more vague and conventional. In modern conditions active and purposeful studying of someone’s future sphere (spheres) of activity should start 4-5 years prior to entering the university. Considerable development will be seen in “preventive” (pre-emptive, anticipatory) education taking into account prospects of development of science for 3-5-10 years from no on. Masterful knowledge of methods of scientific-analytical and creative thinking is becoming the same social standard and a sign of affiliation to elite social groups as, for example, the presence of higher education diploma. The lawof inverse proportionality of controllabilityand the ability to development says the more the system is controllable, the less it is capable of development. Controllable development may only be overtaking/catching up/. Now, a few thoughts about errors in the course of training.Traditional approach tends to consider an error as the lack of learning, assiduity, attention, diligence, etc. As a result the one to blameis a trainee. Error should be perceived as a constructive element in the systemof heuristic training. An educational institution is just the institute where the person should make mistakes under the guidance of a teacher. An important element of cognitive system is professional terminology. The lack of knowledge of terms would not release anyone from the need to understand… Each term contains the concentrated mass of nuances and details distinguishing the scientific vision of the matter in question from the ordinary, unscientific understanding… It should be mentioned that the process of teaching/educating/ is a stress which has pluses and minuses, whereas the process of studying is a much smaller stress. One of the main tasks in terms of (self-) education may be the formation of active desire (internal requirement) to study and be engaged in (self-) education with independent search of appropriate means and possibilities. Special consideration should be given to teaching/training means and methods, i.e. what is comprehensible to one group of trainees may be useless for others. Major differentiation would be seen in age categories plus individual features. Training games are quite a universal tool used for a wide range of subjects and development of practical skills, since the game reflects the trainee’s behavior in reality. It is a system that provides an immediate feedback. Instead of listening to a lecture the trainee is given the individual lesson adapted for his/her needs. Game is modeling of reality and method of influencing it by the trainee. Some minuses of game include conventionality and schematic nature of what is going on and the development of the trainee’s behavioral and cogitative stereotypes. Major strategic consequences of wide spread of scientific thinking skills may include systemic (including quantitative - qualitative) changes in the system of science, education and industry, sharp increase of labor force mobility (both “white” and “blue collar”) and possible global social-economic and social-political changes.

Part 1. Meta-skills:

Passpreliminary test by means of Kettel’s 16-factorquestionnaire (form C), test your IQ (Intelligence Quotient) using Aizenc’s test. Undergo testing for operative and long-term memory, attention distribution, noise immunity and will. Plan the development of these qualities in your character.

Methods of work with the text

(W. Tuckman “Educational Psychology. From Theory to Application”. Florida. State University. 1992):

1. Look through the text before reading it in detail to determine what it is about.

2. Focus your attention on the most significant places(semantic nodes) in the text.

3. Keep short record (summary/synopsis) of the most significant facts.

4. Keep close watch of understanding of what you read. If something appears not quite understood, re-read the paragraph once again.

5. Check up and generalize (analyze) what you have read in respect to the purpose of your reading.

6. Check up the correctness of understanding of separate words and thoughtsin reference literature.

7. Quickly resume the work (reading) if you have been interrupted.

Training of fast reading – “Fast Reader 32” Program. Download the program: http://www.nodevice.ru/soft/windows/education/trenning/5072.html http://kornjakov.ru/index.htm, http://www.freesoft.ru/?id=670591 - for handheld computer.Plan 2-week “result-oriented” trainings - your current maximum is + 50%.

Methods of critical and creative thinking

Critical thinking:

1. Analytical thinking (information analysis, selection of necessary facts, comparison, collation of facts, phenomena). Useful questions in this connection are “who?”, “what?”, “where?”, “when?”, “why?”, “where?”, “what for?”, “how?”, “how many/much?”, “what?”(“which?”) to be asked in the most unusual combinations, while trying to find (to suppose) all options of answers.

2. Associative thinking (determination of associations with the previously studied familiar facts, phenomena, determination of associations with new qualitiesof a subject, phenomenon, etc.).

3. Independence of thinking (the absence of dependence on authorities and/or stereotypes, prejudices, etc.).

4. Logic thinking (the ability to build the logic of provability of the decision made, the internal logic of a problem being solved, the logic of sequence of actions undertakenfor the solution of the problem, etc.).

5. Systemic thinking (the ability to consider the object, the problem in question within the integrityof their ties/relations and characteristics).

Creative thinking:

1. Ability of mental experimentation, spatial imagination.

2. Ability of independent transfer of knowledge for the decision of new problem, task, search of new decisions.

3. Combinatory abilities (the ability to combine the earlier known methods, ways of task/problem solution in a new combined, complex way – the morphological analysis).

4. Prognostic abilities (the ability to anticipate possible consequences of the decisions made, ability to establishcause-and-effect relations).

5. Heuristic way of thinking, intuitive inspiration, insight. The above stated abilities can be supplemented by specific abilities to work with information, for which purpose it is important to be able to select required (for specific goals) information from various sources to analyze it, systematize and generalize the data obtained in accordance with the cognitive task set forth, the ability to reveal problems in various fields of knowledge, in the surrounding reality, to make grounded hypotheses for their solution. It is also necessary to be able to put experiments (not only mental, but also natural), make well-reasoned conclusions, build the system of proofs, to be able to process statistically the data obtained from test and experimental checks, to be able to generate new ideas, possible ways of search of decisions, registration of results, to be able to work in the collective, while solving cognitive, creative tasks in cooperation with others, at that playing different social roles, as well as to be master of artand culture of communication.

Research and searchmethods of information processing:

1. Independent search and selection of information on specific problem.

2. Information analysis for the purpose of selection of facts, data necessary for the description of the object of study, its characteristics, qualities; for selection of facts conducive to the provability and/or refutation of the vision of the task/problem solution; building of facts, data analyzed in the logical sequence of proofs, etc.

3. Definition, vision of problems that need examination and solution.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 161
Бесплатно скачать Дипломная работа: The manager as a teacher: selected aspects of stimulation of scientsfsc thinking