Дипломная работа: Усовершенствование системы водоподготовки производства этил-бензол-стирола
В общем виде уравнение теплового баланса в испарительных охладителях имеет вид
|
где с — удельная плотность воды, кг/м3;
W = pW’ — массовый расход воды, кг/с;
r — удельная плотность воды, кг/м3;
W’— объемный расход воды, м3/с;
Dt — разница температур горячей и охлажденной воды, °С;
Т — рассматриваемый период, сут;
R — приток теплоты от солнечной радиации, Дж.
Процессы, происходящие при испарительном охлаждении, более сложные, чем теплообмен через твердую стенку. Последний имеет место в охладителях, охлаждение в которых происходит без контакта охлаждаемой воды с атмосферным воздухом — через стены теплообменников (радиаторов). Такой теплообмен называется конвективным. Он происходит при одновременном действии конвекции и теплопроводности. Конвективный теплообмен зависит от разнообразных факторов, в том числе: режима движения жидкости и воздуха, свободного или принудительного их движения, плотности, вязкости, коэффициента теплопроводности и температуропроводности жидкости и воздуха, формы и размера участвующей в конвективном теплообмене поверхности.
Удельное количество теплоты, переданной через стенку радиатора, определяется формулой Ньютона
|
где qр — удельное количество теплоты, кДж/(м2/ч);
aр — общий коэффициент теплопередачи от воды к воздуху через стенку радиатора, кДж/(м2×ч×°С)
t — температура воды, проходящей через радиатор, °С;
q— температура воздуха, обтекающего радиатор, °С.
Коэффициент aр определяют по экспериментальным данным [4].
1.5. Требования к качеству охлаждающей воды оборотных систем водоснабжения
Требования к качеству охлаждающей воды определяются условиями ее использования в конкретных технологических схемах с учетом специфики производства. Тем не менее, все они сводятся к обеспечению высокоэффективной работы теплообменного оборудования, инженерных сооружений и коммуникаций, входящих в состав оборотного комплекса. Для успешной реализации этой задачи необходимо осуществлять проведение таких водных режимов, при которых на поверхности охлаждающих элементов и в самой системе практически не должно возникать активных коррозионных процессов и образования каких-либо солевых, механических и биологических отложений. В противном случае нарушаются нормальные условия теплопередачи, вызывающие снижение производительности основных технологических потоков и оборудования, а также качества вырабатываемой продукции; увеличиваются энергетические затраты циркуляционных насосных станций на преодоление дополнительных гидравлических сопротивлений в охлаждающих контурах; резко ухудшаются эксплуатационные характеристики оборотных систем; происходит разрушение конструкционных материалов.
Водный режим оборотных систем существенно отличается от режима прямоточных систем. Многократный нагрев оборотной воды и ее последующее охлаждение в градирнях и брызгальных бассейнах приводит к потерям равновесной углекислоты и отложению на поверхности теплообменников и холодильников главным образом кальциевых карбонатных отложений в соответствии с реакцией
Растворимость карбоната магния значительно больше, чем карбоната кальция, и поэтому MgCO3 входит в состав накипи в незначительном количестве в результате соосаждения с СаСО3. Однако при обработке добавочной воды известью с целью ее умягчения при значениях рН > 10 в результате гидролиза образуется малорастворимое соединение — гидроокись магния:
Природные воды, используемые в схемах технического водоснабжения, в которых не происходит выпадения солей карбонатной жесткости при температуре 40-60°С принято называть термостабильными. Для оценки термостабильности оборотной воды применяют шестибальную шкалу.
Практически карбонатная жесткость термостабильных вод не превосходит 2—3 мг×экв/л для оборотного водоснабжения и 4 мг×экв/л — для прямоточного.
Ограниченно термостабильные — природные воды, вызывающие карбонатные отложения только по мере накопления солей кальция в результате упаривания, имеют карбонатную жесткость не более 4 мг×экв/л.
Нетермостабильные — воды с карбонатной жесткостью свыше 4 мг×экв/л, у которых при относительно небольшом нагревании сразу же наблюдается выпадение СаСО3.
При работе оборотных систем с ограниченными добавками подпиточной воды, а, следовательно, при больших коэффициентах концентрирования солей содержание сульфата кальция достигает предела растворимости в циркуляционной воде, и он в зависимости от температуры воды и наличия в ней определенных примесей может выпадать из раствора в виде дигидрата CaSO4×2H2O и ангидрита CaSO4.
Скорость отложения карбоната кальция и других солей не должна превышать соответствующих пределов, поэтому требуется ограничить карбонатную жесткость и содержание сульфатов в виде расходуемой на подпитку охлаждающих оборотных систем. Кроме того, в оборотной и добавочной воде лимитируется концентрация взвешенных веществ, так как взвешенные вещества могут формировать в теплообменниках слой отложений, снижая, таким образом, коэффициент теплопередачи. При скорости движения жидкости 1 м/с и концентрациях грубодиспергированных примесей в оборотной воде 150мг/л и 1000 мг/л коэффициент теплопередачи снижается соответственно на 20 и 35 %. В свою очередь, увеличение скорости движения воды в трубках теплообменных аппаратов приводит к уменьшению интенсивности образования механических отложений. По некоторым данным, минимальная самоочищающая скорость движения жидкости, обеспечивающая вынос и транспортирование механических примесей (песка, накипи и других взвесей) крупностью 0,1-4мм из охлаждаемых элементов, составляет 0,01-0,5м/с. При наличии в оборотной воде окалины скорость циркуляционного потока должна быть не менее 0,8-1 м/с.
Источником загрязнений оборотной воды взвешенными веществами являются неосветленные воды поверхностных водоемов, вторичные продукты деструкции коррозионных и карбонатных отложений, биообрастаний, а также пыль минерального и органического происхождения, проникающая в охладители из атмосферного воздуха. Концентрация пыли в воздухе зависит от регионального фактора, степени загрязненности воздуха выбросами промышленных предприятий, почвенно-климатических условий, скорости ветра и т д. Концентрацию взвешенных веществ, вносимых в оборотную воду из воздуха, возможно, прогнозировать исходя из формулы
|
где DС — прирост концентрации взвешенных веществ в оборотной воде при прохождении ее через градирню, г/м3,
Своз — запыленность атмосферного воздуха, мг/м3;