Дипломная работа: Влияние кристаллографической текстуры на анизотропию физико-механических свойств деформированных полуфабрикатов из сплавов на основе титана
Содержание
Введение
Глава 1. Аустенитные коррозионно-стойкие стали
1.1 Способы получения аустенитной структуры
1.2 Коррозионно-стойкие(нержавеющие) стали
Глава 2. Азотсодержащие коррозионно-стойкие стали
Глава 3. Технология производства аустенитных коррозионно-стойких сталей
3.1 Выплавка аустенитных коррозионно-стойких сталей
3.2 Выплавка азотсодержащих аустенитных коррозионно-стойких сталей
3.3 Термомеханическая обработка аустенитных коррозионно-стойких сталей
3.4 Термомеханическая обработка азотсодержащих аустенитных коррозионно-стойких сталей
3.5 Термообработка аустенитных азотсодержащих коррозионно-стойких сталей
Глава 4. Свойства аустенитных азотсодержащих коррозионно-стойких сталей
Выводы
Список использованной литературы
Введение
Прогнозы показывают что, несмотря на тенденцию к сокращению доли сплавов на основе железа в общем объеме конструкционных материалов, в обозримом будущем мировое производство стали сохранится на уровне нескольких сотен миллионов тонн. Будут значительно возрастать требования к качеству сталей всех типов. Увеличится доля легированных (нержавеющих) сталей, и, следовательно, обострится проблема рационального использования легирующих элементов. Среди них, прежде всего, следует отметить азот, доступный практически в неограниченных количествах. Применение азота для легирования сталей, безусловно, является одной из первостепенных проблем в материаловедении. Использование азота как легирующего элемента в легированных сталях позволяет не только повысить механические и коррозионные свойства, но и экономить дорогие и дефицитные никель, марганец, молибден и вольфрам. [1]
Для изготовления сталей легированных азотом в спецэлектрометаллургии широко используется метод электрошлакового переплава металлических электродов в водоохлаждаемую изложницу (кристаллизатор). Металлические электроды выплавляются в открытых электродуговых печах. ЭШП характеризуется высокими технико-экономическими показателями процесса. Небольшое удорожание металла компенсируется его весьма высоким качеством, недостижимым для металла обычной выплавки, а также полным устранением брака. К числу достоинств электрошлакового слитка следует отнести химическую, структурную однородность слитка и получаемых из него проката, поковок или штамповок. В отличие от обычного слитка он практически свободен от ликвации даже таких сильноликвирующих элементов, как углерод, сера, фосфор.
Даже в литом виде электрошлаковый металл обладает большей плотностью, чем деформированный открытой выплавки. В процессе ЭШП в стали резко снижается содержание неметаллических включений, в первую очередь серы, кислорода. Для электрошлакового металла характерно весьма равномерное распределение неметаллических и избыточных фаз, например, нитридов, карбонитридов, боридов, интерметаллидов.
Химически и структурно гомогенный электрошлаковый металл значительно лучше сваривается, чем неоднородный по составу и строению металл открытой выплавки. Металл, полученный электрошлаковым переплавом менее склонен к хрупкому разрушению в сравнении с металлом открытой выплавки, изделия, изготовленные из него, значительно долговечнее и надежнее в эксплуатации, чем аналогичные изделия из металла открытой выплавки. [2]
Глава 1. Аустенитные коррозионно-стойкие стали
аустенитный азотсодержащий коррозионный сталь
Аустенит – твердый раствор углерода или азота в γ-Fe. В ГЦК решетке в центре имеется пора диаметром 0,102нм. В этой поре атом углерода может поместиться, вызывая некоторое увеличение размера решетки γ-Fe.
Рис. 1 Твердый раствор внедрения: а- кристаллическая решетка при полном заполнении всех пор; б- кристаллическая решетка аустенита
Кристаллическую структуру аустенита можно себе представить как г.ц.к. решетку, состоящую из атомов железа, в которую внедрены меньшего размера атомы углерода. Если бы все свободные места (поры) в г.ц.к решетке были заняты углеродом, то это состояние характеризовала бы схема, изображенная на рис 1, а. Но так как атом углерода больше размеров поры, то при попадании его в решетку железа последняя искажается, и остальные поры становятся недопустимыми для других атомов углерода. На рис. 1, б показано строение элементарной ячейки аустенита, вкоторой растворен один атом углерода.
Параметр решетки аустенита при комнатной температуре равен 0,286 нм, а безуглеродистого Feγ 0,356 нм. Эта величина условна, так как безуглеродистое γ-железо при комнатной температуре не существует, а величина эта определяется методом экстраполяции.
Параметр решетки, как известно, зависит от температуры и от наличия растворенных атомов. Известен параметр решетки аустенита при комнатной температуре в сталях с содержанием углерода свыше 0,6—0,7 % (рис. 2, а) и параметр решетки чистого γ-железа, но при высоких температурах (рис.2,б).
--> ЧИТАТЬ ПОЛНОСТЬЮ <--