Дипломная работа: Волновая резонансная теория
Для создания Checkmate Джексон обратился к наукам о поведении и в основу системы заложил нейронную сеть. Используя процесс, сходный с тем, который протекает при развитии психологических оценок, эксперты по компьютерной безопасности Psynapse описали алгоритмы поведения, о которых программа будет сообщать администраторам. "Однажды столкнувшись с явлением, обучившись", - говорит Джексон, - "Checkmate может обобщить его и использовать в ситуациях, с которыми она раньше никогда не сталкивалась". По данным компании тестирование показывает, что Checkmate так же аккуратна, как и человек – и намного быстрее. По сравнению с людьми-экспертами, Checkmate "гораздо стремительнее, тот есть может оценить намерения пользователей сети в реальном времени," говорит Джексон. Checkmate, продажи которой начнутся в январе, будет продаваться как готовое к использованию приложение. Ожидаемая начальная цена - $30,000 за единицу товара.
О возможностях использования нейронных сетей можно говорить бесконечно. Они используются в финансовом прогнозировании,….И в первую очередь в построении искусственного интеллекта и интеллектуальных роботов. Актуальность развития этой сферы науки очевидна.
Развитие искусственных нейронных сетей вдохновляется биологией. То есть рассматривая сетевые конфигурации и алгоритмы, исследователи мыслят их в терминах организации мозговой деятельности. Но на этом аналогия может и закончиться. Наши знания о работе мозга столь ограничены, что мало бы нашлось руководящих ориентиров для тех, кто стал бы ему подражать. Поэтому разработчикам сетей приходится выходить за пределы современных биологических знаний в поисках структур, способных выполнять полезные функции. Во многих случаях это приводит к необходимости отказа от биологического правдоподобия, мозг становится просто метафорой, и создаются сети, невозможные в живой материи или требующие неправдоподобно больших допущений об анатомии и функционировании мозга. Несмотря на то что связь с биологией слаба и зачастую несущественна, искусственные нейронные сети продолжают сравниваться с мозгом.
Для лучшего понимания задачи и ее решения необходимы некоторые знания из анатомии.
1.2 Некоторые сведения из анатомии мозга и нейрона
Мозг состоит из нескольких больших участков, каждый из которых отвечает за какие-то жизненные функции. Мозг включает: ствол головного мозга (задний мозг), мозжечок, лимбическую систему, диэнцифалон и кору головного мозга (рис.1).
Ствол головного мозга – часть мозга, соединяющая головной и спинной мозг. Он контролирует многие основные функции, такие как биение сердца, дыхание, прием пищи, сон. Осуществляет он это с помощью указаний спинному мозгу, другим частям мозга и тела о том, что необходимо делать для выполнения основных функций.
Мозжечок, который составляет всего одну восьмую веса головного мозга, координирует инструкции мозга по привычным повторяющимся действиям и по поддержанию равновесия и сохранению позы. Это выпуклый рельефный участок, расположенный над стволом головного мозга.
На вершине ствола головного мозга под корой расположен участок более эволюционно примитивной структуры – лимбической системы (рис. 2). Лимбическая система задействована во многих наших эмоциях и мотивациях, особенно в тех, что относятся к выживанию, например, страх и гнев, и тех, что связаны с сексуальным поведением.
Рис.1. Этот рисунок мозга в разрезе демонстрирует некоторые основные области мозга.
Рис.2. Рисунок мозга в разрезе демонстрирует некоторые внутренние структуры мозга. Амигдалоид и гиппокамп находятся глубоко в мозге, но показано так, чтобы было видно в какой части.
Две крупных структуры лимбической системы – амигдалоид и гиппокамп также отвечают за память.
Гиппокамп - (от греч. Hippocampos - мифическое существо Гиппокамп) небольшая часть мозга, одна из функций которой, кратковременная память и сохранение вновь возникающих воспоминаний. Гиппокамп занимается перекодировкой информации в краткосрочной памяти человека для её последующей записи в долговременной памяти.
Диэнцифалон, который также расположен под корой головного мозга, содержит таламус и гипоталамус (рис.2). Таламус задействован в сенсорном восприятиии и регулировании моторных функций (то есть движений). Он соединяет области коры головного мозга, которые отвечают за сенсорное восприятие и движение, с другими частями головного и спинного мозга, у которых также свои роли в ощущениях и движениях.
Гипоталамус очень маленький, но важный компонент диэнцифалона. Он играет главную роль в регулировании гормонов, гипофиза, температуры тела, надпочечника и прочего.
Кора головного мозга, разделенная на правое и левое полушария, составляет около двух третей массы мозга и покрывает большую часть остальных структур мозга. Это самая развитая часть человеческого мозга, ответственная за мышление, восприятие, употребление и понимание языка. Это также самая молодая структура в плане эволюции мозга. Кора головного мозга может быть разделена на области, каждая из которых выполняет свою функцию (рис. 3). Например, есть области, ответственные за зрение, слух, осязание, движение, обоняние. Другие области отвечают за мышление и объяснение причин. Хотя многие функции, такие как осязание, регулируются и правым и левым полушариями, есть такие, которые управляются только одним полушарием. Например, у многих людей способности к языку зависят только от левого полушария.
Рис. 3.Рисунок мозга в разрезе демонстрирует доли коры головного мозга и их функции.
Мозг состоит из миллиардов нервных клеток – нейронов. Нейрон (от греч. neuron -нерв ), нервная клетка, состоящая из тела и отходящих от него отростков -относительно коротких дендритов и длинного аксона; основная функциональная и структурная единица нервной системы. Нейрон проводит нервные импульсы от рецепторов в центральную нервную систему (чувствительные нейроны); от центральной нервной системы к исполнительным органам (двигательные нейроны); соединяют между собой другие нервные клетки (вставочные нейроны).
Рис.4. Схема нейрона
Нейрон проводит электрические импульсы, находясь в возбужденном состоянии. Рассмотрим строение нейрона. В природе не существует "типичного" нейрона, поэтому постараюсь схематически описать свойства, общие для большинства нейронов, хотя в каждом специальном случае эту обобщенную картину придется соответственно модифицировать. Возбуждение нейронов изменяет потенциал дендритов и тела клетки . Эффекты этих изменений сходятся на аксонном холмике . В результате чего, при соответствующей пространственно-временной конфигурации пришедших сигналов, импульс мембранного потенциала начинает распространяться по аксону, расходится по концевым разветвлениям и активизирует концевые синаптические луковички , которые в свою очередь изменяют мембранный потенциал других нейронов или мышечных волокон. Луковички так же называют пуговками . Пуговки лежат на других нейронах или на эффекторах. Места соприкосновения этих веточек с другими клетками называются синапсами.
Хоть и указано направление передачи информации от дендритов к аксону, нейрон может "проводить" в обоих направлениях, но, в большинстве случаев, возбуждение передается на дендрит или сому (соматические - клетки животных или растений, кроме половых) той клетки, с которой он образует синапс (рис. 5). При этом возбуждение сначала передается на холмик, а за тем распространяется по аксону, пока не достигнет концевого разветвления.
Рис.5. Синапс
Рассмотрим клетку как живое существо, помещенное в мембрану, между наружной и внутренней поверхностью которой существует разность потенциалов. Если изменить эту разность, то это изменение распространяется пассивным образом (как распространяется тепло от нагретого конца к другим частям металлического стержня). Для клеток с короткими отростками этого достаточно чтобы передать сигнал об изменении потенциала из одного конца системы в другой. Но если аксон достаточно длинный, то этого механизма не достаточно.
У клеточных мембран есть дополнительное свойство: когда разность потенциалов превышает так называемый порог, то в цилиндрических образованиях типа аксона возникает импульс, который активно распространяется, сохраняет постоянную амплитуду, то есть не затухает (подобно горению пороха в металлической трубке, то есть происходит цепная реакция передачи энергии от одного слоя пороха другому, регенеративный процесс). Но в трубке порох прогорит и в дальнейшем возможен только пассивный теплообмен. Поэтому аксон лучше сравнивать с перезаряжающимся запалом: представим, что после распространения каждого такого импульса по аксону происходят химические процессы - аналог -перезарядка запала. Поэтому имеется короткий рефрактерный период (рис. 6), во время которого аксон не может передавать импульс; именно в этот период происходит химическое восстановление.